Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis.
Binding Sites
COVID-19
/ genetics
Computational Biology
/ methods
Cytokines
/ genetics
Databases, Genetic
Gene Expression Regulation
Genome, Viral
Host-Pathogen Interactions
/ genetics
Humans
Pandemics
RNA, Viral
/ genetics
RNA-Binding Proteins
/ genetics
RNA-Seq
SARS-CoV-2
/ genetics
Serpins
/ genetics
Signal Transduction
/ genetics
Transcriptome
Virus Replication
/ genetics
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
17 05 2021
17 05 2021
Historique:
received:
20
08
2020
accepted:
05
04
2021
entrez:
18
5
2021
pubmed:
19
5
2021
medline:
27
5
2021
Statut:
epublish
Résumé
The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic (COVID-19) after emerging in Wuhan, China. Here we analyzed public host and viral RNA sequencing data to better understand how SARS-CoV-2 interacts with human respiratory cells. We identified genes, isoforms and transposable element families that are specifically altered in SARS-CoV-2-infected respiratory cells. Well-known immunoregulatory genes including CSF2, IL32, IL-6 and SERPINA3 were differentially expressed, while immunoregulatory transposable element families were upregulated. We predicted conserved interactions between the SARS-CoV-2 genome and human RNA-binding proteins such as the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and eukaryotic initiation factor 4 (eIF4b). We also identified a viral sequence variant with a statistically significant skew associated with age of infection, that may contribute to intracellular host-pathogen interactions. These findings can help identify host mechanisms that can be targeted by prophylactics and/or therapeutics to reduce the severity of COVID-19.
Identifiants
pubmed: 34002013
doi: 10.1038/s42003-021-02095-0
pii: 10.1038/s42003-021-02095-0
pmc: PMC8128904
doi:
Substances chimiques
Cytokines
0
RNA, Viral
0
RNA-Binding Proteins
0
SERPINA3 protein, human
0
Serpins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
590Références
Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).
pubmed: 31986264
pmcid: 7159299
doi: 10.1016/S0140-6736(20)30183-5
Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).
pubmed: 32284615
doi: 10.1038/s41591-020-0820-9
WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int .
Tsang, K. W. et al. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348, 1977–1985 (2003).
pubmed: 12671062
doi: 10.1056/NEJMoa030666
Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. M. E. & Fouchier, R. A. M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814–1820 (2012).
pubmed: 23075143
doi: 10.1056/NEJMoa1211721
Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).
pubmed: 32015507
pmcid: 7095418
doi: 10.1038/s41586-020-2012-7
Lam, T. T.-Y. et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).
pubmed: 32218527
doi: 10.1038/s41586-020-2169-0
Ingraham, N. E. et al. Immunomodulation in COVID-19. Lancet Respir. Med. 8, 544–546 (2020).
pubmed: 32380023
pmcid: 7198187
doi: 10.1016/S2213-2600(20)30226-5
Beigel, J. H. et al. Remdesivir for the treatment of Covid-19 - final report. N. Engl. J. Med. 383, 1813–1826 (2020).
pubmed: 32445440
doi: 10.1056/NEJMoa2007764
Standl, F., Jöckel, K.-H., Brune, B., Schmidt, B. & Stang, A. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(20)30648-4 (2020).
doi: 10.1016/S1473-3099(20)30648-4
pubmed: 32795407
Wang, Y., Wang, Y., Chen, Y. & Qin, Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID‐19) implicate special control measures. J. Med. Virol. 92, 568–576 (2020).
pubmed: 32134116
doi: 10.1002/jmv.25748
Giamarellos-Bourboulis, E. J. et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 27, 992–1000.e3 (2020).
pubmed: 32320677
pmcid: 7172841
doi: 10.1016/j.chom.2020.04.009
Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448 (2020).
pubmed: 32132184
pmcid: 7164635
doi: 10.1126/science.abb2762
Fung, T. S. & Liu, D. X. Human coronavirus: host-pathogen interaction. Annu. Rev. Microbiol. 73, 529–557 (2019).
pubmed: 31226023
doi: 10.1146/annurev-micro-020518-115759
Li, Z. & Nagy, P. D. Diverse roles of host RNA binding proteins in RNA virus replication. RNA Biol 8, 305–315 (2011).
pubmed: 21505273
pmcid: 3230553
doi: 10.4161/rna.8.2.15391
Macchietto, M. G., Langlois, R. A. & Shen, S. S. Virus-induced transposable element expression up-regulation in human and mouse host cells. Life Sci. Alliance 3, e201900536 (2020).
pubmed: 31964680
pmcid: 6977392
doi: 10.26508/lsa.201900536
Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2017).
pubmed: 27867194
doi: 10.1038/nrg.2016.139
Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468 (2020).
Daniloski, Z. et al. Identification of required host factors for SARS-CoV-2 infection in human cells. Cell https://doi.org/10.1016/j.cell.2020.10.030 (2020).
doi: 10.1016/j.cell.2020.10.030
pubmed: 33147445
pmcid: 7584921
Wen, W. et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. 6, 31 (2020).
pubmed: 32377375
pmcid: 7197635
doi: 10.1038/s41421-020-0168-9
Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 842–844 (2020).
pubmed: 32398875
doi: 10.1038/s41591-020-0901-9
Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036–1045.e9 (2020).
pubmed: 32416070
pmcid: 7227586
doi: 10.1016/j.cell.2020.04.026
Chasman, D. et al. Integrating transcriptomic and proteomic data using predictive regulatory network models of host response to pathogens. PLoS Comput. Biol. 12, e1005013 (2016).
pubmed: 27403523
pmcid: 4942116
doi: 10.1371/journal.pcbi.1005013
The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47, D330–D338 (2019).
Zhang, F. et al. Adaptive immune responses to SARS-CoV-2 infection in severe versus mild individuals. Signal Transduct. Target Ther. 5, 156 (2020).
pubmed: 32796814
pmcid: 7426596
doi: 10.1038/s41392-020-00263-y
Zhang, J.-Y. et al. Single-cell landscape of immunological responses in patients with COVID-19. Nat. Immunol. 21, 1107–1118 (2020).
doi: 10.1038/s41590-020-0762-x
pubmed: 32788748
Wilk, A. J. et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 26, 1070–1076 (2020).
pubmed: 32514174
pmcid: 7382903
doi: 10.1038/s41591-020-0944-y
Thiele, I. et al. A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 31, 419–425 (2013).
pubmed: 23455439
doi: 10.1038/nbt.2488
Metallo, C. M. & Heiden, M. G. V. Understanding metabolic regulation and its influence on cell physiology. Mol. Cell 49, 388 (2013).
Watson, E., Yilmaz, L. S. & Walhout, A. J. Understanding metabolic regulation at a systems level: metabolite sensing, mathematical predictions, and model organisms. Annu. Rev. Genet. 49, 553–75 (2015).
pubmed: 26631516
doi: 10.1146/annurev-genet-112414-055257
Patel, M. S. & Harris, R. A. Metabolic Regulation. in Encyclopedia of Cell Biology: Volume 1 (eds. Bradshaw, R. A. & Stahl, P. D.) 288–297 (Academic Press, 2016).
Pusa, T. et al. MOOMIN - Mathematical explOration of’Omics data on a MetabolIc Network. Bioinformatics 36, 514–523 (2020).
pubmed: 31504164
doi: 10.1093/bioinformatics/btz584
Wang, R. et al. Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses. Cell 184, 106–119.e14, https://doi.org/10.1016/j.cell.2020.12.004 (2021).
Leppek, K., Das, R. & Barna, M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19, 158–174 (2018).
pubmed: 29165424
doi: 10.1038/nrm.2017.103
Mignone, F., Gissi, C., Liuni, S. & Pesole, G. Untranslated regions of mRNAs. Genome Biol. 3, REVIEWS0004 (2002).
pubmed: 11897027
pmcid: 139023
doi: 10.1186/gb-2002-3-3-reviews0004
Goodarzi, H. et al. Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature 485, 264–268 (2012).
pubmed: 22495308
pmcid: 3350620
doi: 10.1038/nature11013
de Koning, A. P. J., Gu, W., Castoe, T. A., Batzer, M. A. & Pollock, D. D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7, e1002384 (2011).
pubmed: 22144907
pmcid: 3228813
doi: 10.1371/journal.pgen.1002384
Cordaux, R. & Batzer, M. A. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10, 691–703 (2009).
pubmed: 19763152
pmcid: 2884099
doi: 10.1038/nrg2640
Mills, R. E., Bennett, E. A., Iskow, R. C. & Devine, S. E. Which transposable elements are active in the human genome? Trends Genet. 23, 183–191 (2007).
Sundaram, V. & Wysocka, J. Transposable elements as a potent source of diverse -regulatory sequences in mammalian genomes. Philos. Trans. R. Soc. Lond. B Biol. Sci 375, 20190347 (2020).
pubmed: 32075564
pmcid: 7061989
doi: 10.1098/rstb.2019.0347
Friedli, M. & Trono, D. The developmental control of transposable elements and the evolution of higher species. Annu. Rev. Cell Dev. Biol. 31, 429–451 (2015).
pubmed: 26393776
doi: 10.1146/annurev-cellbio-100814-125514
Babaian, A. & Mager, D. L. Endogenous retroviral promoter exaptation in human cancer. Mob. DNA 7, 24 (2016).
pubmed: 27980689
pmcid: 5134097
doi: 10.1186/s13100-016-0080-x
Kojima, K. K. Human transposable elements in Repbase: genomic footprints from fish to humans. Mob. DNA 9, 2 (2018).
pubmed: 29308093
pmcid: 5753468
doi: 10.1186/s13100-017-0107-y
Pace, J. K. 2nd & Feschotte, C. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res. 17, 422–432 (2007).
pubmed: 17339369
pmcid: 1832089
doi: 10.1101/gr.5826307
Smit, A. F. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr. Opin. Genet. Dev. 9, 657–663 (1999).
pubmed: 10607616
doi: 10.1016/S0959-437X(99)00031-3
Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).
pubmed: 26941318
pmcid: 4887275
doi: 10.1126/science.aad5497
Schmid, C. D. & Bucher, P. MER41 repeat sequences contain inducible STAT1 binding sites. PLoS ONE 5, e11425 (2010).
pubmed: 20625510
pmcid: 2897888
doi: 10.1371/journal.pone.0011425
Deniz, Ö. et al. Endogenous retroviruses are a source of enhancers with oncogenic potential in acute myeloid leukaemia. Nat. Commun. 11, 3506 (2020).
pubmed: 32665538
pmcid: 7360734
doi: 10.1038/s41467-020-17206-4
Ito, J. et al. Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses. PLoS Genet. 13, e1006883 (2017).
pubmed: 28700586
pmcid: 5529029
doi: 10.1371/journal.pgen.1006883
van de Lagemaat, L. N., Landry, J.-R., Mager, D. L. & Medstrand, P. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 19, 530–536 (2003).
pubmed: 14550626
doi: 10.1016/j.tig.2003.08.004
McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).
pubmed: 20436461
pmcid: 4840234
doi: 10.1038/nbt.1630
Giudice, G., Sánchez-Cabo, F., Torroja, C. & Lara-Pezzi, E. ATtRACT-a database of RNA-binding proteins and associated motifs. Database 2016, baw035 (2016).
Kim, D. et al. The Architecture of SARS-CoV-2 Transcriptome. Cell 181, 914–921.e10 (2020).
pubmed: 32330414
pmcid: 7179501
doi: 10.1016/j.cell.2020.04.011
GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).
doi: 10.1126/science.1262110
Reyfman, P. A. et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 1517–1536 (2019).
pubmed: 30554520
pmcid: 6580683
doi: 10.1164/rccm.201712-2410OC
Mukherjee, N. et al. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol. Cell 43, 327–339 (2011).
pubmed: 21723170
pmcid: 3220597
doi: 10.1016/j.molcel.2011.06.007
Ladd, A. N., Charlet, N. & Cooper, T. A. The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol. Cell. Biol. 21, 1285–1296 (2001).
pubmed: 11158314
pmcid: 99581
doi: 10.1128/MCB.21.4.1285-1296.2001
Jurica, M. S., Licklider, L. J., Gygi, S. R., Grigorieff, N. & Moore, M. J. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA 8, 426–439 (2002).
pubmed: 11991638
pmcid: 1370266
doi: 10.1017/S1355838202021088
Pickett, B. E. et al. Metadata-driven comparative analysis tool for sequences (meta-CATS): an automated process for identifying significant sequence variations that correlate with virus attributes. Virology 447, 45–51 (2013).
pubmed: 24210098
doi: 10.1016/j.virol.2013.08.021
Mehta, H. M., Malandra, M. & Corey, S. J. G-CSF and GM-CSF in neutropenia. J. Immunol. 195, 1341–1349 (2015).
pubmed: 26254266
doi: 10.4049/jimmunol.1500861
Wu, D. & Yang, X. O. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J. Microbiol. Immunol. Infect. 53, 368–370 (2020).
pubmed: 32205092
pmcid: 7156211
doi: 10.1016/j.jmii.2020.03.005
Mehta, P. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034 (2020).
pubmed: 32192578
pmcid: 7270045
doi: 10.1016/S0140-6736(20)30628-0
Zhou, Y. & Zhu, Y. Important role of the IL-32 inflammatory network in the host response against viral infection. Viruses 7, 3116–3129 (2015).
pubmed: 26087456
pmcid: 4488729
doi: 10.3390/v7062762
Vitting-Seerup, K. & Sandelin, A. The landscape of isoform switches in human cancers. Mol. Cancer Res. 15, 1206–1220 (2017).
pubmed: 28584021
doi: 10.1158/1541-7786.MCR-16-0459
Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).
pubmed: 30545856
pmcid: 6443102
doi: 10.1126/science.aat8127
Tazi, J., Bakkour, N. & Stamm, S. Alternative splicing and disease. Biochim. Biophys. Acta. 1792, 14–26 (2009).
Saulle, I. et al. A new ERAP2/Iso3 isoform expression is triggered by different microbial stimuli in human cells. Could it play a role in the modulation of SARS-CoV-2 infection? Cells 9, 1951 (2020).
pmcid: 7563522
doi: 10.3390/cells9091951
Zhang, Z.-L., Hou, Y.-L., Li, D.-T. & Li, F.-Z. Laboratory findings of COVID-19: a systematic review and meta-analysis. Scand. J. Clin. Lab. Invest. 80, 441–447 (2020).
pubmed: 32449374
doi: 10.1080/00365513.2020.1768587
Aziz, M., Fatima, R. & Assaly, R. Elevated interleukin‐6 and severe COVID‐19: a meta‐analysis. J. Med. Virol. 92, 2283–2285 (2020).
pubmed: 32343429
doi: 10.1002/jmv.25948
Chen, G. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 130, 2620–2629 (2020).
pubmed: 32217835
pmcid: 7190990
doi: 10.1172/JCI137244
Huang, L. et al. Sepsis-associated severe interleukin-6 storm in critical coronavirus disease 2019. Cell. Mol. Immunol. 17, 1092–1094 (2020).
pubmed: 32917983
doi: 10.1038/s41423-020-00522-6
Grifoni, E. et al. Interleukin-6 as prognosticator in patients with COVID-19. J. Infect. 81, 452–482 (2020).
pubmed: 32526326
pmcid: 7278637
doi: 10.1016/j.jinf.2020.06.008
McElvaney, O. J. et al. A linear prognostic score based on the ratio of interleukin-6 to interleukin-10 predicts outcomes in COVID-19. EBioMedicine 61, 103026 (2020).
pubmed: 33039714
pmcid: 7543971
doi: 10.1016/j.ebiom.2020.103026
Hassan, N. & Choy, E. in Oxford Textbook of Rheumatoid Arthritis 389–398 (Oxford Univ. Press, 2020).
Horváth, S. & Mirnics, K. Immune system disturbances in schizophrenia. Biol. Psychiatry 75, 316–323 (2014).
pubmed: 23890736
doi: 10.1016/j.biopsych.2013.06.010
Nitto, T. & Onodera, K. Linkage between coenzyme a metabolism and inflammation: roles of pantetheinase. J. Pharmacol. Sci. 123, 1–8 (2013).
pubmed: 23978960
doi: 10.1254/jphs.13R01CP
Guo, W. et al. SNX8 modulates the innate immune response to RNA viruses by regulating the aggregation of VISA. Cell. Mol. Immunol. https://doi.org/10.1038/s41423-019-0285-2 (2019).
doi: 10.1038/s41423-019-0285-2
pubmed: 31664223
pmcid: 7192841
Hinz, M. et al. Signal responsiveness of IκB kinases is determined by Cdc37-assisted transient interaction with Hsp90. J. Biol. Chem. 282, 32311–32319 (2007).
pubmed: 17728246
doi: 10.1074/jbc.M705785200
Li, J.-Y. et al. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Res. 286, 198074 (2020).
pubmed: 32589897
pmcid: 7309931
doi: 10.1016/j.virusres.2020.198074
Trizzino, M., Kapusta, A. & Brown, C. D. Transposable elements generate regulatory novelty in a tissue-specific fashion. BMC Genomics 19, 468 (2018).
pubmed: 29914366
pmcid: 6006921
doi: 10.1186/s12864-018-4850-3
Soliman, S., Faris, M. E., Ratemi, Z. & Halwani, R. Switching host metabolism as an approach to dampen SARS-CoV-2 infection. Ann. Nutr. Metab. 76, 297–303 (2020).
Abu-Farha, M. et al. The role of lipid metabolism in COVID-19 virus infection and as a drug target. Int. J. Mol. Sci. 21, 3544 (2020).
pmcid: 7278986
doi: 10.3390/ijms21103544
Song, J.-W. et al. Omics-driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis. Cell Metab. 32, 188–202.e5 (2020).
pubmed: 32610096
pmcid: 7311890
doi: 10.1016/j.cmet.2020.06.016
Thomas, T. et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight 5, e140327 (2020).
pmcid: 7453907
doi: 10.1172/jci.insight.140327
Flynn, R. A. et al. Discovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions. Cell https://doi.org/10.1016/j.cell.2021.03.012 (2021).
Schmidt, N. et al. The SARS-CoV-2 RNA-protein interactome in infected human cells. Nat Microbiol 6, 339–353 (2021).
Smith, R. W. P. & Gray, N. K. Poly(A)-binding protein (PABP): a common viral target. Biochem. J 426, 1–12 (2010).
pubmed: 20102337
doi: 10.1042/BJ20091571
Perez, C., McKinney, C., Chulunbaatar, U. & Mohr, I. Translational control of the abundance of cytoplasmic poly(A) binding protein in human cytomegalovirus-infected cells. J. Virol. 85, 156–164 (2011).
pubmed: 20980505
doi: 10.1128/JVI.01778-10
Ahlquist, P., Noueiry, A. O., Lee, W.-M., Kushner, D. B. & Dye, B. T. Host factors in positive-strand RNA virus genome replication. J. Virol 77, 8181–8186 (2003).
pubmed: 12857886
pmcid: 165243
doi: 10.1128/JVI.77.15.8181-8186.2003
Polacek, C., Friebe, P. & Harris, E. Poly(A)-binding protein binds to the non-polyadenylated 3′ untranslated region of dengue virus and modulates translation efficiency. J. Gen. Virol 90, 687–692 (2009).
pubmed: 19218215
doi: 10.1099/vir.0.007021-0
Smith, R. W. P. et al. Viral and cellular mRNA-specific activators harness PABP and eIF4G to promote translation initiation downstream of cap binding. Proc. Natl Acad. Sci. USA 114, 6310–6315 (2017).
pubmed: 28559344
doi: 10.1073/pnas.1610417114
pmcid: 5474791
Li, H. P., Zhang, X., Duncan, R., Comai, L. & Lai, M. M. Heterogeneous nuclear ribonucleoprotein A1 binds to the transcription-regulatory region of mouse hepatitis virus RNA. Proc. Natl Acad. Sci. USA 94, 9544–9549 (1997).
pubmed: 9275159
doi: 10.1073/pnas.94.18.9544
pmcid: 23214
Huang, P. & Lai, M. M. Heterogeneous nuclear ribonucleoprotein a1 binds to the 3′-untranslated region and mediates potential 5′-3′-end cross talks of mouse hepatitis virus RNA. J. Virol. 75, 5009–5017 (2001).
pubmed: 11333880
pmcid: 114904
doi: 10.1128/JVI.75.11.5009-5017.2001
Shi, S. T., Huang, P., Li, H. P. & Lai, M. M. Heterogeneous nuclear ribonucleoprotein A1 regulates RNA synthesis of a cytoplasmic virus. EMBO J. 19, 4701–4711 (2000).
pubmed: 10970862
pmcid: 302072
doi: 10.1093/emboj/19.17.4701
Pachetti, M. et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J. Transl. Med. 18, 179 (2020).
pubmed: 32321524
pmcid: 7174922
doi: 10.1186/s12967-020-02344-6
Kannan, S. R. et al. Infectivity of SARS-CoV-2: there is something more than D614G? J. Neuroimmune Pharmacol. 15, 574–577 (2020).
pubmed: 32930936
doi: 10.1007/s11481-020-09954-3
pmcid: 7490321
Hillen, H. S. et al. Structure of replicating SARS-CoV-2 polymerase. Nature 584, 154–156 (2020).
pubmed: 32438371
doi: 10.1038/s41586-020-2368-8
Wang, R., Hozumi, Y., Zheng, Y.-H., Yin, C. & Wei, G.-W. Host immune response driving SARS-CoV-2 evolution. Viruses 12, 1095 (2020).
pmcid: 7599751
doi: 10.3390/v12101095
Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).
pubmed: 27312411
pmcid: 5039924
doi: 10.1093/bioinformatics/btw354
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
pubmed: 25690850
pmcid: 4643835
doi: 10.1038/nbt.3122
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
pubmed: 20979621
pmcid: 3218662
doi: 10.1186/gb-2010-11-10-r106
Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).
pubmed: 10802651
pmcid: 3037419
doi: 10.1038/75556
Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 23, 257–258 (2007).
pubmed: 17098774
doi: 10.1093/bioinformatics/btl567
Lesack, K. & Naugler, C. An open-source software program for performing Bonferroni and related corrections for multiple comparisons. J. Pathol. Inform. 2, 52 (2011).
pubmed: 22276243
pmcid: 3263024
doi: 10.4103/2153-3539.91130
Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).
pubmed: 21789182
pmcid: 3138752
doi: 10.1371/journal.pone.0021800
Tarca, A. L. et al. A novel signaling pathway impact analysis. Bioinformatics 25, 75–82 (2009).
pubmed: 18990722
doi: 10.1093/bioinformatics/btn577
Sales, G., Calura, E., Cavalieri, D. & Romualdi, C. graphite - a Bioconductor package to convert pathway topology to gene network. BMC Bioinformatics 13, 20 (2012).
pubmed: 22292714
pmcid: 3296647
doi: 10.1186/1471-2105-13-20
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
doi: 10.1038/nprot.2008.211
Leng, N. et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 29, 1035–1043 (2013).
pubmed: 23428641
pmcid: 3624807
doi: 10.1093/bioinformatics/btt087
Vitting-Seerup, K. & Sandelin, A. IsoformSwitchAnalyzeR: analysis of changes in genome-wide patterns of alternative splicing and its functional consequences. Bioinformatics 35, 4469–4471 (2019).
pubmed: 30989184
doi: 10.1093/bioinformatics/btz247
Wang, L. et al. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 41, e74 (2013).
pubmed: 23335781
pmcid: 3616698
doi: 10.1093/nar/gkt006
Dosztányi, Z., Csizmok, V., Tompa, P. & Simon, I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434 (2005).
pubmed: 15955779
doi: 10.1093/bioinformatics/bti541
Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).
pubmed: 30778233
doi: 10.1038/s41587-019-0036-z
El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).
pubmed: 30357350
doi: 10.1093/nar/gky995
Lerat, E., Fablet, M., Modolo, L., Lopez-Maestre, H. & Vieira, C. TEtools facilitates big data expression analysis of transposable elements and reveals an antagonism between their activity and that of piRNA genes. Nucleic Acids Res. 45, e17 (2017).
pubmed: 28204592
Shu, Y. & McCauley, J. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro. Surveill. 22, 30494 (2017).
pubmed: 28382917
pmcid: 5388101
doi: 10.2807/1560-7917.ES.2017.22.13.30494
Nakamura, T., Yamada, K. D., Tomii, K. & Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34, 2490–2492 (2018).
pubmed: 29506019
pmcid: 6041967
doi: 10.1093/bioinformatics/bty121
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).
Ferrarini, M. G. et al. Supplementary materials for ‘Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis’, https://doi.org/10.5281/zenodo.4644596 (2021).
Ferrarini, M. G. et al. vaguiarpulido/covid19-research: covid19-research, https://doi.org/10.5281/zenodo.4576990 (2021).