Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
17 05 2021
Historique:
received: 20 08 2020
accepted: 05 04 2021
entrez: 18 5 2021
pubmed: 19 5 2021
medline: 27 5 2021
Statut: epublish

Résumé

The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic (COVID-19) after emerging in Wuhan, China. Here we analyzed public host and viral RNA sequencing data to better understand how SARS-CoV-2 interacts with human respiratory cells. We identified genes, isoforms and transposable element families that are specifically altered in SARS-CoV-2-infected respiratory cells. Well-known immunoregulatory genes including CSF2, IL32, IL-6 and SERPINA3 were differentially expressed, while immunoregulatory transposable element families were upregulated. We predicted conserved interactions between the SARS-CoV-2 genome and human RNA-binding proteins such as the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and eukaryotic initiation factor 4 (eIF4b). We also identified a viral sequence variant with a statistically significant skew associated with age of infection, that may contribute to intracellular host-pathogen interactions. These findings can help identify host mechanisms that can be targeted by prophylactics and/or therapeutics to reduce the severity of COVID-19.

Identifiants

pubmed: 34002013
doi: 10.1038/s42003-021-02095-0
pii: 10.1038/s42003-021-02095-0
pmc: PMC8128904
doi:

Substances chimiques

Cytokines 0
RNA, Viral 0
RNA-Binding Proteins 0
SERPINA3 protein, human 0
Serpins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

590

Références

Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).
pubmed: 31986264 pmcid: 7159299 doi: 10.1016/S0140-6736(20)30183-5
Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).
pubmed: 32284615 doi: 10.1038/s41591-020-0820-9
WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int .
Tsang, K. W. et al. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348, 1977–1985 (2003).
pubmed: 12671062 doi: 10.1056/NEJMoa030666
Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. M. E. & Fouchier, R. A. M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814–1820 (2012).
pubmed: 23075143 doi: 10.1056/NEJMoa1211721
Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).
pubmed: 32015507 pmcid: 7095418 doi: 10.1038/s41586-020-2012-7
Lam, T. T.-Y. et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).
pubmed: 32218527 doi: 10.1038/s41586-020-2169-0
Ingraham, N. E. et al. Immunomodulation in COVID-19. Lancet Respir. Med. 8, 544–546 (2020).
pubmed: 32380023 pmcid: 7198187 doi: 10.1016/S2213-2600(20)30226-5
Beigel, J. H. et al. Remdesivir for the treatment of Covid-19 - final report. N. Engl. J. Med. 383, 1813–1826 (2020).
pubmed: 32445440 doi: 10.1056/NEJMoa2007764
Standl, F., Jöckel, K.-H., Brune, B., Schmidt, B. & Stang, A. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(20)30648-4 (2020).
doi: 10.1016/S1473-3099(20)30648-4 pubmed: 32795407
Wang, Y., Wang, Y., Chen, Y. & Qin, Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID‐19) implicate special control measures. J. Med. Virol. 92, 568–576 (2020).
pubmed: 32134116 doi: 10.1002/jmv.25748
Giamarellos-Bourboulis, E. J. et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 27, 992–1000.e3 (2020).
pubmed: 32320677 pmcid: 7172841 doi: 10.1016/j.chom.2020.04.009
Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448 (2020).
pubmed: 32132184 pmcid: 7164635 doi: 10.1126/science.abb2762
Fung, T. S. & Liu, D. X. Human coronavirus: host-pathogen interaction. Annu. Rev. Microbiol. 73, 529–557 (2019).
pubmed: 31226023 doi: 10.1146/annurev-micro-020518-115759
Li, Z. & Nagy, P. D. Diverse roles of host RNA binding proteins in RNA virus replication. RNA Biol 8, 305–315 (2011).
pubmed: 21505273 pmcid: 3230553 doi: 10.4161/rna.8.2.15391
Macchietto, M. G., Langlois, R. A. & Shen, S. S. Virus-induced transposable element expression up-regulation in human and mouse host cells. Life Sci. Alliance 3, e201900536 (2020).
pubmed: 31964680 pmcid: 6977392 doi: 10.26508/lsa.201900536
Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2017).
pubmed: 27867194 doi: 10.1038/nrg.2016.139
Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468 (2020).
Daniloski, Z. et al. Identification of required host factors for SARS-CoV-2 infection in human cells. Cell https://doi.org/10.1016/j.cell.2020.10.030 (2020).
doi: 10.1016/j.cell.2020.10.030 pubmed: 33147445 pmcid: 7584921
Wen, W. et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. 6, 31 (2020).
pubmed: 32377375 pmcid: 7197635 doi: 10.1038/s41421-020-0168-9
Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 842–844 (2020).
pubmed: 32398875 doi: 10.1038/s41591-020-0901-9
Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036–1045.e9 (2020).
pubmed: 32416070 pmcid: 7227586 doi: 10.1016/j.cell.2020.04.026
Chasman, D. et al. Integrating transcriptomic and proteomic data using predictive regulatory network models of host response to pathogens. PLoS Comput. Biol. 12, e1005013 (2016).
pubmed: 27403523 pmcid: 4942116 doi: 10.1371/journal.pcbi.1005013
The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47, D330–D338 (2019).
Zhang, F. et al. Adaptive immune responses to SARS-CoV-2 infection in severe versus mild individuals. Signal Transduct. Target Ther. 5, 156 (2020).
pubmed: 32796814 pmcid: 7426596 doi: 10.1038/s41392-020-00263-y
Zhang, J.-Y. et al. Single-cell landscape of immunological responses in patients with COVID-19. Nat. Immunol. 21, 1107–1118 (2020).
doi: 10.1038/s41590-020-0762-x pubmed: 32788748
Wilk, A. J. et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 26, 1070–1076 (2020).
pubmed: 32514174 pmcid: 7382903 doi: 10.1038/s41591-020-0944-y
Thiele, I. et al. A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 31, 419–425 (2013).
pubmed: 23455439 doi: 10.1038/nbt.2488
Metallo, C. M. & Heiden, M. G. V. Understanding metabolic regulation and its influence on cell physiology. Mol. Cell 49, 388 (2013).
Watson, E., Yilmaz, L. S. & Walhout, A. J. Understanding metabolic regulation at a systems level: metabolite sensing, mathematical predictions, and model organisms. Annu. Rev. Genet. 49, 553–75 (2015).
pubmed: 26631516 doi: 10.1146/annurev-genet-112414-055257
Patel, M. S. & Harris, R. A. Metabolic Regulation. in Encyclopedia of Cell Biology: Volume 1 (eds. Bradshaw, R. A. & Stahl, P. D.) 288–297 (Academic Press, 2016).
Pusa, T. et al. MOOMIN - Mathematical explOration of’Omics data on a MetabolIc Network. Bioinformatics 36, 514–523 (2020).
pubmed: 31504164 doi: 10.1093/bioinformatics/btz584
Wang, R. et al. Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses. Cell 184, 106–119.e14, https://doi.org/10.1016/j.cell.2020.12.004 (2021).
Leppek, K., Das, R. & Barna, M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19, 158–174 (2018).
pubmed: 29165424 doi: 10.1038/nrm.2017.103
Mignone, F., Gissi, C., Liuni, S. & Pesole, G. Untranslated regions of mRNAs. Genome Biol. 3, REVIEWS0004 (2002).
pubmed: 11897027 pmcid: 139023 doi: 10.1186/gb-2002-3-3-reviews0004
Goodarzi, H. et al. Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature 485, 264–268 (2012).
pubmed: 22495308 pmcid: 3350620 doi: 10.1038/nature11013
de Koning, A. P. J., Gu, W., Castoe, T. A., Batzer, M. A. & Pollock, D. D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7, e1002384 (2011).
pubmed: 22144907 pmcid: 3228813 doi: 10.1371/journal.pgen.1002384
Cordaux, R. & Batzer, M. A. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10, 691–703 (2009).
pubmed: 19763152 pmcid: 2884099 doi: 10.1038/nrg2640
Mills, R. E., Bennett, E. A., Iskow, R. C. & Devine, S. E. Which transposable elements are active in the human genome? Trends Genet. 23, 183–191 (2007).
Sundaram, V. & Wysocka, J. Transposable elements as a potent source of diverse -regulatory sequences in mammalian genomes. Philos. Trans. R. Soc. Lond. B Biol. Sci 375, 20190347 (2020).
pubmed: 32075564 pmcid: 7061989 doi: 10.1098/rstb.2019.0347
Friedli, M. & Trono, D. The developmental control of transposable elements and the evolution of higher species. Annu. Rev. Cell Dev. Biol. 31, 429–451 (2015).
pubmed: 26393776 doi: 10.1146/annurev-cellbio-100814-125514
Babaian, A. & Mager, D. L. Endogenous retroviral promoter exaptation in human cancer. Mob. DNA 7, 24 (2016).
pubmed: 27980689 pmcid: 5134097 doi: 10.1186/s13100-016-0080-x
Kojima, K. K. Human transposable elements in Repbase: genomic footprints from fish to humans. Mob. DNA 9, 2 (2018).
pubmed: 29308093 pmcid: 5753468 doi: 10.1186/s13100-017-0107-y
Pace, J. K. 2nd & Feschotte, C. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res. 17, 422–432 (2007).
pubmed: 17339369 pmcid: 1832089 doi: 10.1101/gr.5826307
Smit, A. F. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr. Opin. Genet. Dev. 9, 657–663 (1999).
pubmed: 10607616 doi: 10.1016/S0959-437X(99)00031-3
Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).
pubmed: 26941318 pmcid: 4887275 doi: 10.1126/science.aad5497
Schmid, C. D. & Bucher, P. MER41 repeat sequences contain inducible STAT1 binding sites. PLoS ONE 5, e11425 (2010).
pubmed: 20625510 pmcid: 2897888 doi: 10.1371/journal.pone.0011425
Deniz, Ö. et al. Endogenous retroviruses are a source of enhancers with oncogenic potential in acute myeloid leukaemia. Nat. Commun. 11, 3506 (2020).
pubmed: 32665538 pmcid: 7360734 doi: 10.1038/s41467-020-17206-4
Ito, J. et al. Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses. PLoS Genet. 13, e1006883 (2017).
pubmed: 28700586 pmcid: 5529029 doi: 10.1371/journal.pgen.1006883
van de Lagemaat, L. N., Landry, J.-R., Mager, D. L. & Medstrand, P. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 19, 530–536 (2003).
pubmed: 14550626 doi: 10.1016/j.tig.2003.08.004
McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).
pubmed: 20436461 pmcid: 4840234 doi: 10.1038/nbt.1630
Giudice, G., Sánchez-Cabo, F., Torroja, C. & Lara-Pezzi, E. ATtRACT-a database of RNA-binding proteins and associated motifs. Database 2016, baw035 (2016).
Kim, D. et al. The Architecture of SARS-CoV-2 Transcriptome. Cell 181, 914–921.e10 (2020).
pubmed: 32330414 pmcid: 7179501 doi: 10.1016/j.cell.2020.04.011
GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).
doi: 10.1126/science.1262110
Reyfman, P. A. et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 1517–1536 (2019).
pubmed: 30554520 pmcid: 6580683 doi: 10.1164/rccm.201712-2410OC
Mukherjee, N. et al. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol. Cell 43, 327–339 (2011).
pubmed: 21723170 pmcid: 3220597 doi: 10.1016/j.molcel.2011.06.007
Ladd, A. N., Charlet, N. & Cooper, T. A. The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol. Cell. Biol. 21, 1285–1296 (2001).
pubmed: 11158314 pmcid: 99581 doi: 10.1128/MCB.21.4.1285-1296.2001
Jurica, M. S., Licklider, L. J., Gygi, S. R., Grigorieff, N. & Moore, M. J. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA 8, 426–439 (2002).
pubmed: 11991638 pmcid: 1370266 doi: 10.1017/S1355838202021088
Pickett, B. E. et al. Metadata-driven comparative analysis tool for sequences (meta-CATS): an automated process for identifying significant sequence variations that correlate with virus attributes. Virology 447, 45–51 (2013).
pubmed: 24210098 doi: 10.1016/j.virol.2013.08.021
Mehta, H. M., Malandra, M. & Corey, S. J. G-CSF and GM-CSF in neutropenia. J. Immunol. 195, 1341–1349 (2015).
pubmed: 26254266 doi: 10.4049/jimmunol.1500861
Wu, D. & Yang, X. O. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J. Microbiol. Immunol. Infect. 53, 368–370 (2020).
pubmed: 32205092 pmcid: 7156211 doi: 10.1016/j.jmii.2020.03.005
Mehta, P. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034 (2020).
pubmed: 32192578 pmcid: 7270045 doi: 10.1016/S0140-6736(20)30628-0
Zhou, Y. & Zhu, Y. Important role of the IL-32 inflammatory network in the host response against viral infection. Viruses 7, 3116–3129 (2015).
pubmed: 26087456 pmcid: 4488729 doi: 10.3390/v7062762
Vitting-Seerup, K. & Sandelin, A. The landscape of isoform switches in human cancers. Mol. Cancer Res. 15, 1206–1220 (2017).
pubmed: 28584021 doi: 10.1158/1541-7786.MCR-16-0459
Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).
pubmed: 30545856 pmcid: 6443102 doi: 10.1126/science.aat8127
Tazi, J., Bakkour, N. & Stamm, S. Alternative splicing and disease. Biochim. Biophys. Acta. 1792, 14–26 (2009).
Saulle, I. et al. A new ERAP2/Iso3 isoform expression is triggered by different microbial stimuli in human cells. Could it play a role in the modulation of SARS-CoV-2 infection? Cells 9, 1951 (2020).
pmcid: 7563522 doi: 10.3390/cells9091951
Zhang, Z.-L., Hou, Y.-L., Li, D.-T. & Li, F.-Z. Laboratory findings of COVID-19: a systematic review and meta-analysis. Scand. J. Clin. Lab. Invest. 80, 441–447 (2020).
pubmed: 32449374 doi: 10.1080/00365513.2020.1768587
Aziz, M., Fatima, R. & Assaly, R. Elevated interleukin‐6 and severe COVID‐19: a meta‐analysis. J. Med. Virol. 92, 2283–2285 (2020).
pubmed: 32343429 doi: 10.1002/jmv.25948
Chen, G. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 130, 2620–2629 (2020).
pubmed: 32217835 pmcid: 7190990 doi: 10.1172/JCI137244
Huang, L. et al. Sepsis-associated severe interleukin-6 storm in critical coronavirus disease 2019. Cell. Mol. Immunol. 17, 1092–1094 (2020).
pubmed: 32917983 doi: 10.1038/s41423-020-00522-6
Grifoni, E. et al. Interleukin-6 as prognosticator in patients with COVID-19. J. Infect. 81, 452–482 (2020).
pubmed: 32526326 pmcid: 7278637 doi: 10.1016/j.jinf.2020.06.008
McElvaney, O. J. et al. A linear prognostic score based on the ratio of interleukin-6 to interleukin-10 predicts outcomes in COVID-19. EBioMedicine 61, 103026 (2020).
pubmed: 33039714 pmcid: 7543971 doi: 10.1016/j.ebiom.2020.103026
Hassan, N. & Choy, E. in Oxford Textbook of Rheumatoid Arthritis 389–398 (Oxford Univ. Press, 2020).
Horváth, S. & Mirnics, K. Immune system disturbances in schizophrenia. Biol. Psychiatry 75, 316–323 (2014).
pubmed: 23890736 doi: 10.1016/j.biopsych.2013.06.010
Nitto, T. & Onodera, K. Linkage between coenzyme a metabolism and inflammation: roles of pantetheinase. J. Pharmacol. Sci. 123, 1–8 (2013).
pubmed: 23978960 doi: 10.1254/jphs.13R01CP
Guo, W. et al. SNX8 modulates the innate immune response to RNA viruses by regulating the aggregation of VISA. Cell. Mol. Immunol. https://doi.org/10.1038/s41423-019-0285-2 (2019).
doi: 10.1038/s41423-019-0285-2 pubmed: 31664223 pmcid: 7192841
Hinz, M. et al. Signal responsiveness of IκB kinases is determined by Cdc37-assisted transient interaction with Hsp90. J. Biol. Chem. 282, 32311–32319 (2007).
pubmed: 17728246 doi: 10.1074/jbc.M705785200
Li, J.-Y. et al. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Res. 286, 198074 (2020).
pubmed: 32589897 pmcid: 7309931 doi: 10.1016/j.virusres.2020.198074
Trizzino, M., Kapusta, A. & Brown, C. D. Transposable elements generate regulatory novelty in a tissue-specific fashion. BMC Genomics 19, 468 (2018).
pubmed: 29914366 pmcid: 6006921 doi: 10.1186/s12864-018-4850-3
Soliman, S., Faris, M. E., Ratemi, Z. & Halwani, R. Switching host metabolism as an approach to dampen SARS-CoV-2 infection. Ann. Nutr. Metab. 76, 297–303 (2020).
Abu-Farha, M. et al. The role of lipid metabolism in COVID-19 virus infection and as a drug target. Int. J. Mol. Sci. 21, 3544 (2020).
pmcid: 7278986 doi: 10.3390/ijms21103544
Song, J.-W. et al. Omics-driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis. Cell Metab. 32, 188–202.e5 (2020).
pubmed: 32610096 pmcid: 7311890 doi: 10.1016/j.cmet.2020.06.016
Thomas, T. et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight 5, e140327 (2020).
pmcid: 7453907 doi: 10.1172/jci.insight.140327
Flynn, R. A. et al. Discovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions. Cell https://doi.org/10.1016/j.cell.2021.03.012 (2021).
Schmidt, N. et al. The SARS-CoV-2 RNA-protein interactome in infected human cells. Nat Microbiol 6, 339–353 (2021).
Smith, R. W. P. & Gray, N. K. Poly(A)-binding protein (PABP): a common viral target. Biochem. J 426, 1–12 (2010).
pubmed: 20102337 doi: 10.1042/BJ20091571
Perez, C., McKinney, C., Chulunbaatar, U. & Mohr, I. Translational control of the abundance of cytoplasmic poly(A) binding protein in human cytomegalovirus-infected cells. J. Virol. 85, 156–164 (2011).
pubmed: 20980505 doi: 10.1128/JVI.01778-10
Ahlquist, P., Noueiry, A. O., Lee, W.-M., Kushner, D. B. & Dye, B. T. Host factors in positive-strand RNA virus genome replication. J. Virol 77, 8181–8186 (2003).
pubmed: 12857886 pmcid: 165243 doi: 10.1128/JVI.77.15.8181-8186.2003
Polacek, C., Friebe, P. & Harris, E. Poly(A)-binding protein binds to the non-polyadenylated 3′ untranslated region of dengue virus and modulates translation efficiency. J. Gen. Virol 90, 687–692 (2009).
pubmed: 19218215 doi: 10.1099/vir.0.007021-0
Smith, R. W. P. et al. Viral and cellular mRNA-specific activators harness PABP and eIF4G to promote translation initiation downstream of cap binding. Proc. Natl Acad. Sci. USA 114, 6310–6315 (2017).
pubmed: 28559344 doi: 10.1073/pnas.1610417114 pmcid: 5474791
Li, H. P., Zhang, X., Duncan, R., Comai, L. & Lai, M. M. Heterogeneous nuclear ribonucleoprotein A1 binds to the transcription-regulatory region of mouse hepatitis virus RNA. Proc. Natl Acad. Sci. USA 94, 9544–9549 (1997).
pubmed: 9275159 doi: 10.1073/pnas.94.18.9544 pmcid: 23214
Huang, P. & Lai, M. M. Heterogeneous nuclear ribonucleoprotein a1 binds to the 3′-untranslated region and mediates potential 5′-3′-end cross talks of mouse hepatitis virus RNA. J. Virol. 75, 5009–5017 (2001).
pubmed: 11333880 pmcid: 114904 doi: 10.1128/JVI.75.11.5009-5017.2001
Shi, S. T., Huang, P., Li, H. P. & Lai, M. M. Heterogeneous nuclear ribonucleoprotein A1 regulates RNA synthesis of a cytoplasmic virus. EMBO J. 19, 4701–4711 (2000).
pubmed: 10970862 pmcid: 302072 doi: 10.1093/emboj/19.17.4701
Pachetti, M. et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J. Transl. Med. 18, 179 (2020).
pubmed: 32321524 pmcid: 7174922 doi: 10.1186/s12967-020-02344-6
Kannan, S. R. et al. Infectivity of SARS-CoV-2: there is something more than D614G? J. Neuroimmune Pharmacol. 15, 574–577 (2020).
pubmed: 32930936 doi: 10.1007/s11481-020-09954-3 pmcid: 7490321
Hillen, H. S. et al. Structure of replicating SARS-CoV-2 polymerase. Nature 584, 154–156 (2020).
pubmed: 32438371 doi: 10.1038/s41586-020-2368-8
Wang, R., Hozumi, Y., Zheng, Y.-H., Yin, C. & Wei, G.-W. Host immune response driving SARS-CoV-2 evolution. Viruses 12, 1095 (2020).
pmcid: 7599751 doi: 10.3390/v12101095
Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).
pubmed: 27312411 pmcid: 5039924 doi: 10.1093/bioinformatics/btw354
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
pubmed: 25690850 pmcid: 4643835 doi: 10.1038/nbt.3122
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
pubmed: 20979621 pmcid: 3218662 doi: 10.1186/gb-2010-11-10-r106
Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).
pubmed: 10802651 pmcid: 3037419 doi: 10.1038/75556
Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 23, 257–258 (2007).
pubmed: 17098774 doi: 10.1093/bioinformatics/btl567
Lesack, K. & Naugler, C. An open-source software program for performing Bonferroni and related corrections for multiple comparisons. J. Pathol. Inform. 2, 52 (2011).
pubmed: 22276243 pmcid: 3263024 doi: 10.4103/2153-3539.91130
Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).
pubmed: 21789182 pmcid: 3138752 doi: 10.1371/journal.pone.0021800
Tarca, A. L. et al. A novel signaling pathway impact analysis. Bioinformatics 25, 75–82 (2009).
pubmed: 18990722 doi: 10.1093/bioinformatics/btn577
Sales, G., Calura, E., Cavalieri, D. & Romualdi, C. graphite - a Bioconductor package to convert pathway topology to gene network. BMC Bioinformatics 13, 20 (2012).
pubmed: 22292714 pmcid: 3296647 doi: 10.1186/1471-2105-13-20
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
doi: 10.1038/nprot.2008.211
Leng, N. et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 29, 1035–1043 (2013).
pubmed: 23428641 pmcid: 3624807 doi: 10.1093/bioinformatics/btt087
Vitting-Seerup, K. & Sandelin, A. IsoformSwitchAnalyzeR: analysis of changes in genome-wide patterns of alternative splicing and its functional consequences. Bioinformatics 35, 4469–4471 (2019).
pubmed: 30989184 doi: 10.1093/bioinformatics/btz247
Wang, L. et al. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 41, e74 (2013).
pubmed: 23335781 pmcid: 3616698 doi: 10.1093/nar/gkt006
Dosztányi, Z., Csizmok, V., Tompa, P. & Simon, I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434 (2005).
pubmed: 15955779 doi: 10.1093/bioinformatics/bti541
Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).
pubmed: 30778233 doi: 10.1038/s41587-019-0036-z
El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).
pubmed: 30357350 doi: 10.1093/nar/gky995
Lerat, E., Fablet, M., Modolo, L., Lopez-Maestre, H. & Vieira, C. TEtools facilitates big data expression analysis of transposable elements and reveals an antagonism between their activity and that of piRNA genes. Nucleic Acids Res. 45, e17 (2017).
pubmed: 28204592
Shu, Y. & McCauley, J. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro. Surveill. 22, 30494 (2017).
pubmed: 28382917 pmcid: 5388101 doi: 10.2807/1560-7917.ES.2017.22.13.30494
Nakamura, T., Yamada, K. D., Tomii, K. & Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34, 2490–2492 (2018).
pubmed: 29506019 pmcid: 6041967 doi: 10.1093/bioinformatics/bty121
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).
Ferrarini, M. G. et al. Supplementary materials for ‘Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis’, https://doi.org/10.5281/zenodo.4644596 (2021).
Ferrarini, M. G. et al. vaguiarpulido/covid19-research: covid19-research, https://doi.org/10.5281/zenodo.4576990 (2021).

Auteurs

Mariana G Ferrarini (MG)

University of Lyon, INSA-Lyon, INRA BF2l, Villeurbanne, France.

Avantika Lal (A)

NVIDIA Corporation, Santa Clara, CA, USA.

Rita Rebollo (R)

University of Lyon, INSA-Lyon, INRA BF2l, Villeurbanne, France.

Andreas J Gruber (AJ)

Department of Biology, University of Konstanz, Konstanz, Germany.

Andrea Guarracino (A)

Centre for Molecular Bioinformatics, Department of Biology, University Of Rome Tor Vergata, Rome, Italy.

Itziar Martinez Gonzalez (IM)

Amsterdam UMC, Amsterdam, The Netherlands.

Taylor Floyd (T)

Center for Neurogenetics, Weill Cornell Medicine, Cornell University, New York, NY, USA.

Daniel Siqueira de Oliveira (DS)

Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS UMR 5558, Villeurbanne, France.

Justin Shanklin (J)

Brigham Young University, Provo, UT, USA.

Ethan Beausoleil (E)

Brigham Young University, Provo, UT, USA.

Taneli Pusa (T)

Luxembourg Centre for Systems Biomedicine, Belvaux, Luxembourg.

Brett E Pickett (BE)

Brigham Young University, Provo, UT, USA. brett_pickett@byu.edu.

Vanessa Aguiar-Pulido (V)

Department of Computer Science, University of Miami, Coral Gables, FL, USA. vanessa@cs.miami.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH