Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions.
Animals
Cell Differentiation
/ genetics
Cell Proliferation
/ genetics
Cells, Cultured
Computer Simulation
Datasets as Topic
Deep Learning
Hematopoiesis
/ genetics
Humans
Insulin-Secreting Cells
/ physiology
Mice
Models, Genetic
RNA-Seq
Single-Cell Analysis
/ methods
Software
Stem Cells
/ physiology
Stochastic Processes
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
28 05 2021
28 05 2021
Historique:
received:
02
10
2020
accepted:
22
04
2021
entrez:
29
5
2021
pubmed:
30
5
2021
medline:
9
6
2021
Statut:
epublish
Résumé
Existing computational methods that use single-cell RNA-sequencing (scRNA-seq) for cell fate prediction do not model how cells evolve stochastically and in physical time, nor can they predict how differentiation trajectories are altered by proposed interventions. We introduce PRESCIENT (Potential eneRgy undErlying Single Cell gradIENTs), a generative modeling framework that learns an underlying differentiation landscape from time-series scRNA-seq data. We validate PRESCIENT on an experimental lineage tracing dataset, where we show that PRESCIENT is able to predict the fate biases of progenitor cells in hematopoiesis when accounting for cell proliferation, improving upon the best-performing existing method. We demonstrate how PRESCIENT can simulate trajectories for perturbed cells, recovering the expected effects of known modulators of cell fate in hematopoiesis and pancreatic β cell differentiation. PRESCIENT is able to accommodate complex perturbations of multiple genes, at different time points and from different starting cell populations, and is available at https://github.com/gifford-lab/prescient .
Identifiants
pubmed: 34050150
doi: 10.1038/s41467-021-23518-w
pii: 10.1038/s41467-021-23518-w
pmc: PMC8163769
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3222Subventions
Organisme : NHGRI NIH HHS
ID : R01 HG008363
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG008754
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS109217
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM087237
Pays : United States
Références
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2467-E2476
pubmed: 29463712
Nat Methods. 2019 Dec;16(12):1289-1296
pubmed: 31740819
Genes Dev. 2003 Oct 15;17(20):2591-603
pubmed: 14561778
Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1607-11
pubmed: 10677506
J Mol Endocrinol. 2015 Apr;54(2):R103-17
pubmed: 25791577
Philos Trans A Math Phys Eng Sci. 2013 Nov 18;371(2005):20120341
pubmed: 24249769
Nature. 2018 Dec;564(7735):219-224
pubmed: 30518857
Nat Genet. 2000 Jan;24(1):36-44
pubmed: 10615124
Nature. 1997 May 22;387(6631):406-9
pubmed: 9163426
Genes Dev. 1997 Jul 1;11(13):1662-73
pubmed: 9224716
Islets. 2016;8(1):13-34
pubmed: 26404721
Nat Methods. 2018 May;15(5):379-386
pubmed: 29630061
Front Immunol. 2018 Mar 29;9:588
pubmed: 29651288
Nature. 2018 Aug;560(7719):494-498
pubmed: 30089906
Nature. 2017 Jan 18;541(7637):331-338
pubmed: 28102262
Nat Immunol. 2011 Jul 03;12(8):778-85
pubmed: 21725321
Nat Biotechnol. 2020 Dec;38(12):1408-1414
pubmed: 32747759
Dev Cell. 2007 Mar;12(3):457-65
pubmed: 17336910
Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13187-92
pubmed: 9371821
PLoS Genet. 2013;9(1):e1003274
pubmed: 23382704
Cell Syst. 2016 Oct 26;3(4):346-360.e4
pubmed: 27667365
Trends Endocrinol Metab. 2011 Sep;22(9):364-73
pubmed: 21719305
Nat Biotechnol. 2019 Apr;37(4):461-468
pubmed: 30936567
Nat Biotechnol. 2019 May;37(5):547-554
pubmed: 30936559
Nat Protoc. 2012 Mar 01;7(3):562-78
pubmed: 22383036
Diabetes. 2010 Oct;59(10):2530-9
pubmed: 20627934
Dev Cell. 2019 Feb 25;48(4):429-444
pubmed: 30782412
Cell. 2019 Feb 7;176(4):928-943.e22
pubmed: 30712874
Nat Biotechnol. 2018 Jun;36(5):411-420
pubmed: 29608179
Science. 2020 Feb 14;367(6479):
pubmed: 31974159
Dev Biol. 2008 Feb 15;314(2):406-17
pubmed: 18155690
Cell Syst. 2021 Feb 17;12(2):128-140.e4
pubmed: 33373583
Genes Dev. 2011 Aug 15;25(16):1680-5
pubmed: 21852533
Genes Dev. 2011 Nov 1;25(21):2291-305
pubmed: 22056672
Stem Cell Reports. 2021 Apr 13;16(4):810-824
pubmed: 33711266
Nat Biotechnol. 2018 Jun;36(5):421-427
pubmed: 29608177
Cell Stem Cell. 2018 Nov 1;23(5):758-771.e8
pubmed: 30318302
Curr Biol. 2012 Jun 5;22(11):R458-66
pubmed: 22677291
Nat Methods. 2019 Aug;16(8):715-721
pubmed: 31363220
G3 (Bethesda). 2018 Jul 31;8(8):2833-2840
pubmed: 29950431
Cell. 2019 Jun 13;177(7):1888-1902.e21
pubmed: 31178118
Cell Stem Cell. 2020 Jun 4;26(6):938-950.e6
pubmed: 32459995
Nature. 2019 May;569(7756):368-373
pubmed: 31068696
Nat Rev Genet. 2020 Jul;21(7):410-427
pubmed: 32235876
Nat Cell Biol. 2018 Jul;20(7):836-846
pubmed: 29915358
Dev Cell. 2010 Jun 15;18(6):1022-9
pubmed: 20627083
EMBO J. 2007 Sep 19;26(18):4138-48
pubmed: 17762869
Development. 2005 Jul;132(13):2969-80
pubmed: 15930104