Identification and characterization of a novel carboxylesterase EstQ7 from a soil metagenomic library.
Acyltransferase
Carboxylesterase
Metagenome
Molecular docking
Unculturable microorganism
Journal
Archives of microbiology
ISSN: 1432-072X
Titre abrégé: Arch Microbiol
Pays: Germany
ID NLM: 0410427
Informations de publication
Date de publication:
Sep 2021
Sep 2021
Historique:
received:
21
03
2021
accepted:
20
05
2021
revised:
19
05
2021
pubmed:
1
6
2021
medline:
18
9
2021
entrez:
31
5
2021
Statut:
ppublish
Résumé
A novel lipolytic gene, estq7, was identified from a fosmid metagenomic library. The recombinant enzyme EstQ7 consists of 370 amino acids with an anticipated molecular mass of 42 kDa. Multiple sequence alignments showed that EstQ7 contained a pentapeptide motif GHSMG, and a putative catalytic triad Ser174-Asp306-His344. Interestingly, EstQ7 was found to have very little similarity to the characterized lipolytic enzymes. Phylogenetic analysis revealed that EstQ7 may be a member of a novel family of lipolytic enzymes. Biochemical characterization of the recombinant enzyme revealed that it constitutes a slightly alkalophilic, moderate thermophilic and highly active carboxylesterase against short-chain fatty acid esters with optimum temperature 50 ℃ and pH 8.2. The Km and kcat values toward p-nitrophenyl acetate were determined to be 0.17 mM and 1910s
Identifiants
pubmed: 34057548
doi: 10.1007/s00203-021-02398-0
pii: 10.1007/s00203-021-02398-0
doi:
Substances chimiques
Carboxylesterase
EC 3.1.1.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4113-4125Subventions
Organisme : Jiangsu Provincial Key Research and Development Program
ID : BE2017374-2
Organisme : special funds of agro-product quality safety risk assessment of Ministry of Agriculture of the People's Republic of China
ID : GJFP201701505; GJFP20191101
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Alex D, Shainu A, Pandey A, Sukumaran RK (2014) Esterase active in polar organic solvents from the yeast Pseudozyma sp. NII 08165. Enzyme Res 2014:494682. https://doi.org/10.1155/2014/494682
doi: 10.1155/2014/494682
pubmed: 24800063
pmcid: 3996874
Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183. https://doi.org/10.1042/0264-6021:3430177
doi: 10.1042/0264-6021:3430177
pubmed: 10493927
pmcid: 10493927
Bachar A et al (2010) Soil microbial abundance and diversity along a low precipitation gradient. Microb Ecol 60:453–461. https://doi.org/10.1007/s00248-010-9727-1
doi: 10.1007/s00248-010-9727-1
pubmed: 20683588
Biver S, Vandenbol M (2013) Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library. J Ind Microbiol Biot 40:191–200. https://doi.org/10.1007/s10295-012-1217-7
doi: 10.1007/s10295-012-1217-7
Bommarius AS (2015) Biocatalysis: a status report. Annu Rev Chem Biomol Eng 6:319–345. https://doi.org/10.1146/annurev-chembioeng-061114-123415
doi: 10.1146/annurev-chembioeng-061114-123415
pubmed: 26247293
Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. Fems Microbiol Rev 26:73–81. https://doi.org/10.1111/j.1574-6976.2002.tb00599.x
doi: 10.1111/j.1574-6976.2002.tb00599.x
pubmed: 12007643
Brady SF (2007) Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. Nat Protoc 2:1297–1305. https://doi.org/10.1038/nprot.2007.195
doi: 10.1038/nprot.2007.195
pubmed: 17546026
Buller AR, Townsend CA (2013) Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad. Proc Natl Acad Sci Usa 110:E653–E661. https://doi.org/10.1073/pnas.1221050110
doi: 10.1073/pnas.1221050110
pubmed: 23382230
pmcid: 3581919
Byun JS et al (2007) Crystal structure of hyperthermophilic esterase EstE1 and the relationship between its dimerization and thermostability properties. BMC Struct Biol 7:47. https://doi.org/10.1186/1472-6807-7-47
doi: 10.1186/1472-6807-7-47
pubmed: 17625021
pmcid: 1936996
Choi JE, Kwon MA, Na HY, Hahm DH, Song JK (2013) Isolation and characterization of a metagenome-derived thermoalkaliphilic esterase with high stability over a broad pH range. Extremophiles 17:1013–1021. https://doi.org/10.1007/s00792-013-0583-z
doi: 10.1007/s00792-013-0583-z
pubmed: 24030484
Chu X, He H, Guo C, Sun B (2008) Identification of two novel esterases from a marine metagenomic library derived from South China Sea. Appl Microbiol Biotechnol 80:615–625. https://doi.org/10.1007/s00253-008-1566-3
doi: 10.1007/s00253-008-1566-3
pubmed: 18600322
Daniel W, Janaina J, Rachel R, Jaigeeth D, Kui W, Zdzislaw W (2017) Biochemical and structural analyses of two cryptic esterases in bacteroides intestinalis and their synergistic activities with cognate xylanases. J Mol Biol 429:2509–2527. https://doi.org/10.1016/j.jmb.2017.06.017
doi: 10.1016/j.jmb.2017.06.017
Ferrer M, Martinez-Martinez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN (2016) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 9:22–34. https://doi.org/10.1111/1751-7915.12309
doi: 10.1111/1751-7915.12309
pubmed: 26275154
Garg R, Srivastava R, Brahma V, Verma L, Karthikeyan S, Sahni G (2016) Biochemical and structural characterization of a novel halotolerant cellulase from soil metagenome. Sci Rep 6:39634. https://doi.org/10.1038/srep39634
doi: 10.1038/srep39634
pubmed: 28008971
pmcid: 5180356
Gerits LR, Pareyt B, Decamps K, Delcour JA (2014) Lipases and their functionality in the production of wheat-based food systems. Compr Rev Food Sci F 13:978–989. https://doi.org/10.1111/1541-4337.12085
doi: 10.1111/1541-4337.12085
Gong BL et al (2017) Improvement of enzyme activity and soluble expression of an alkaline protease isolated from oil-polluted mud flat metagenome by random mutagenesis. Enzyme Microb Technol 106:97–105. https://doi.org/10.1016/j.enzmictec.2017.06.015
doi: 10.1016/j.enzmictec.2017.06.015
pubmed: 28859816
Gurung N, Ray S, Bose S, Rai V (2013) A broader view: Microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int Doi: Artn. https://doi.org/10.1155/2013/329121
doi: 10.1155/2013/329121
Hitch TCA, Clavel T (2019) A proposed update for the classification and description of bacterial lipolytic enzymes. PeerJ. https://doi.org/10.7717/peerj.7249
doi: 10.7717/peerj.7249
pubmed: 31328034
pmcid: 6622161
Hyun P, Jeong J, Kyungmoon P, Yong K, Young Y (2013) Prediction of the solvent affecting site and the computational design of stable Candida antarctica lipase B in a hydrophilic organic solvent. J Biotechnol 163:346–352. https://doi.org/10.1016/j.jbiotec.2012.11.00610.1016/j
doi: 10.1016/j.jbiotec.2012.11.00610.1016/j
Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin. Biotech 13:390–397. https://doi.org/10.1016/S0958-1669(02)00341-5
doi: 10.1016/S0958-1669(02)00341-5
Jayanath G, Sowmya P, Bhavya K, Solly S, Bright S, Rosamma P (2018) A novel solvent tolerant esterase of GDSGG motif subfamily from solar saltern through metagenomic approach: Recombinant expression and characterization. Int J Biol Macromol 119:393–401. https://doi.org/10.1016/j.ijbiomac.2018.06.057
doi: 10.1016/j.ijbiomac.2018.06.057
pubmed: 29908272
Katz M, Hover BM, Brady SF (2016) Culture-independent discovery of natural products from soil metagenomes. J Ind Microbiol Biotechnol 43:129–141. https://doi.org/10.1007/s10295-015-1706-6
doi: 10.1007/s10295-015-1706-6
pubmed: 26586404
Kawata T, Ogino H (2010) Amino acid residues involved in organic solvent-stability of the LST-03 lipase. Biochem Biophys Res Commun 400:384–388. https://doi.org/10.1016/j.bbrc.2010.08.080
doi: 10.1016/j.bbrc.2010.08.080
pubmed: 20800576
Li PY et al (2015) Interdomain hydrophobic interactions modulate the thermostability of microbial esterases from the hormone-sensitive lipase family. J Biol Chem 290:11188–11198. https://doi.org/10.1074/jbc.M115.646182
doi: 10.1074/jbc.M115.646182
pubmed: 25771540
pmcid: 4409275
Li X et al (2018) Identification of a novel feruloyl esterase by functional screening of a soil metagenomic library. Appl Biochem Biotech 187:424–437. https://doi.org/10.1007/s12010-018-2832-1
doi: 10.1007/s12010-018-2832-1
Maester TC, Pereira MR, Malaman AMG, Borges JP, Pereira PAM, Lemos EGM (2020) Exploring metagenomic enzymes: a novel esterase useful for short-chain ester synthesis. Catal. https://doi.org/10.3390/catal10101100
doi: 10.3390/catal10101100
Mestrom L, Claessen JGR, Hanefeld U (2019) Enzyme-catalyzed synthesis of esters in water. ChemCatChem 11:2004–2010. https://doi.org/10.1002/cctc.201801991
doi: 10.1002/cctc.201801991
Milshteyn A, Schneider JS, Brady SF (2014) Mining the metabiome: Identifying novel natural products from microbial communities. Chem Biol 21:1211–1223. https://doi.org/10.1016/j.chembiol.2014.08.006
doi: 10.1016/j.chembiol.2014.08.006
pubmed: 25237864
pmcid: 4171686
Morris GM et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256
doi: 10.1002/jcc.21256
pubmed: 19399780
pmcid: 2760638
Muller H et al (2021) Discovery and design of family VIII carboxylesterases as highly efficient acyltransferases. Angew Chem Int Ed Engl 60:2013–2017. https://doi.org/10.1002/anie.202014169
doi: 10.1002/anie.202014169
pubmed: 33140887
Noby N, Saeed H, Embaby AM, Pavlidis IV, Hussein A (2018) Cloning, expression and characterization of cold active esterase (EstN7) from Bacillus cohnii strain N1: a novel member of family IV. Int J Biol Macromol 120:1247–1255. https://doi.org/10.1016/j.ijbiomac.2018.07.169
doi: 10.1016/j.ijbiomac.2018.07.169
pubmed: 30063933
Oh KH et al (2012) Characterization of a novel esterase isolated from intertidal flat metagenome and its tertiary alcohols synthesis. J Mol Catal B 80:67–73. https://doi.org/10.1016/j.molcatb.2012.04.015
doi: 10.1016/j.molcatb.2012.04.015
Park J-M, Kang C-H, Won S-M, Oh K-H, Yoon J-H (2020) Characterization of a novel moderately thermophilic solvent-tolerant esterase isolated from a compost metagenome library. Front Microbiol. https://doi.org/10.3389/fmicb.2019.03069
doi: 10.3389/fmicb.2019.03069
pubmed: 33633697
pmcid: 7714715
Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. https://doi.org/10.1038/nmeth.1701
doi: 10.1038/nmeth.1701
pubmed: 21959131
Ramnath L, Sithole B, Govinden R (2017) Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can J Microbiol 63:179–192. https://doi.org/10.1139/cjm-2016-0447
doi: 10.1139/cjm-2016-0447
pubmed: 28165765
Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394. https://doi.org/10.1146/annurev.micro.57.030502.090759
doi: 10.1146/annurev.micro.57.030502.090759
pubmed: 14527284
Roland L, James U, David E (1992) Assessment of protein models with three-dimensional profiles. Nature. https://doi.org/10.1038/356083a0
doi: 10.1038/356083a0
Sameh H, Soror V, Verma R, Shafaq R, John C (2007) A cold-active esterase of Streptomyces coelicolor A3(2): from genome sequence to enzyme activity. J Ind Microbiol Biot 34:525–531. https://doi.org/10.1007/s10295-007-0224-6
doi: 10.1007/s10295-007-0224-6
Sood S, Sharma A, Sharma N, Kanwar SS (2018) Carboxylesterases: Sources, characterization and broader applications. Insights Enzyme Res. https://doi.org/10.21767/2573-4466.100002
doi: 10.21767/2573-4466.100002
Waterhouse A et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303. https://doi.org/10.1093/nar/gky427
doi: 10.1093/nar/gky427
pubmed: 29788355
pmcid: 6030848
Yang JY, Yan RX, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12:7–8. https://doi.org/10.1038/nmeth.3213
doi: 10.1038/nmeth.3213
pubmed: 25549265
pmcid: 25549265
Yang C et al (2016) Discovery of new cellulases from the metagenome by a metagenomics-guided strategy. Biotechnol Biofuels 9:138. https://doi.org/10.1186/s13068-016-0557-3
doi: 10.1186/s13068-016-0557-3
pubmed: 27382415
pmcid: 4932676
Zarafeta D et al (2016) EstDZ3: A new esterolytic enzyme exhibiting remarkable thermostability. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01779
doi: 10.3389/fmicb.2016.01779
pubmed: 27899916
pmcid: 5110521