Utilizing MIKC-type MADS-box protein SOC1 for yield potential enhancement in maize.


Journal

Plant cell reports
ISSN: 1432-203X
Titre abrégé: Plant Cell Rep
Pays: Germany
ID NLM: 9880970

Informations de publication

Date de publication:
Sep 2021
Historique:
received: 02 03 2021
accepted: 25 05 2021
pubmed: 7 6 2021
medline: 1 9 2021
entrez: 6 6 2021
Statut: ppublish

Résumé

Overexpression of Zea mays SOC gene promotes flowering, reduces plant height, and leads to no reduction in grain production per plant, suggesting enhanced yield potential, at least, through increasing planting density. MIKC-type MADS-box gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is an integrator conserved in the plant flowering pathway. In this study, the maize SOC1 (ZmSOC1) gene was cloned and overexpressed in transgenic maize Hi-II genotype. The T

Identifiants

pubmed: 34091722
doi: 10.1007/s00299-021-02722-4
pii: 10.1007/s00299-021-02722-4
pmc: PMC8376726
doi:

Substances chimiques

MADS Domain Proteins 0
Plant Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1679-1693

Informations de copyright

© 2021. The Author(s).

Références

Abraham-Juarez MJ, Schrager-Lavelle A, Man J, Whipple C, Handakumbura P, Babbitt C, Bartlett M (2020) Evolutionary variation in MADS Box dimerization affects floral development and protein abundance in maize. Plant Cell 32:3408–3424
pubmed: 32873631 pmcid: 7610293 doi: 10.1105/tpc.20.00300
Adamczyk BJ, Fernandez DE (2009) MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol 149:1713–1723
pubmed: 19211705 pmcid: 2663741 doi: 10.1104/pp.109.135806
Alter P, Bircheneder S, Zhou LZ, Schluter U, Gahrtz M, Sonnewald U, Dresselhaus T (2016) Flowering time-regulated genes in maize include the transcription factor ZmMADS1. Plant Physiol 172:389–404
pubmed: 27457125 pmcid: 5074603 doi: 10.1104/pp.16.00285
Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001–1013
pubmed: 20409274 doi: 10.1111/j.1365-313X.2010.04148.x
Anderson JA, Brustkern S, Cong B, Deege L, Delaney B, Hong BN, Lawit S, Mathesius C, Schmidt J, Wu JRR, Zhang J, Zimmermann C (2019a) Evaluation of the history of safe use of the maize ZMM28 protein. J Agr Food Chem 67:7466–7474
doi: 10.1021/acs.jafc.9b00391
Anderson JA, Hong B, Moellring E, TeRonde S, Walker C, Wang Y, Maxwell C (2019b) Composition of forage and grain from genetically modified DP202216 maize is equivalent to non-modified conventional maize (Zea mays L.). GM Crops Food 10:13
doi: 10.1080/21645698.2019.1609849
Ash C, Jasny BR, Malakoff DA, Sugden AM (2010) Food security. Feeding the future introduction. Science 327:797
pubmed: 20150477 doi: 10.1126/science.327.5967.797
Bae JM, Noh SA, Kwak MS, Shin JS, Lee HS (2011) Sweetpotato mads-box promoter directing high level expression in plant storage root. In: Google Patents. Available online at https://patents.google.com/patent/US7273967B2/en . Accessed 3 June 2021
Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489
pubmed: 14615187 doi: 10.1016/S1055-7903(03)00207-0
Cacharron J, Theissen G, Deleu W, Saedler H (2000) Mads-box genes and uses thereof. In: Google Patents. Available online at https://patents.google.com/patent/WO2018213538A1/en . Accessed 3 June 2021
Castelan-Munoz N, Herrera J, Cajero-Sanchez W, Arrizubieta M, Trejo C, Garcia-Ponce B, Sanchez MP, Alvarez-Buylla ER, Garay-Arroyo A (2019) MADS-Box genes are key components of genetic regulatory networks involved in abiotic stress and plastic developmental responses in plants. Front Plant Sci 10:853
pubmed: 31354752 pmcid: 6636334 doi: 10.3389/fpls.2019.00853
Catron SA (2019) Petition for Determination of Nonregulated Status for Enhanced Grain Yield Potential and Glufosinate-ammonium Resistant DP202216 Maize. Available online at https://www.aphis.usda.gov/brs/aphisdocs/19-10101p-ppra.pdf . Accessed 3 June 2021
Causier B, Kieffer M, Davies B (2002) Plant biology. MADS-Box genes reach maturity. Science 296:275–276
pubmed: 11951024 doi: 10.1126/science.1071401
Danilevskaya O, Bruce W (2008) Yield enhancement in plants by modulation of maize mads box transcription factor ZMM28. Available online at https://patents.google.com/patent/WO2008148872A1 . Accessed 3 June 2021
Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. PHYTOCHEMICAL BULLETIN 19:5
Dreni L, Kater MM (2014) MADS reloaded: evolution of the AGAMOUS subfamily genes. New Phytol 201:717–732
pubmed: 24164649 doi: 10.1111/nph.12555
Dreni L, Zhang D (2016) Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes. J Exp Bot 67:1625–1638
pubmed: 26956504 doi: 10.1093/jxb/erw046
Fang W, Wang Z, Cui R, Li J, Li Y (2012) Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana. Plant J 70:929–939
pubmed: 22251317 doi: 10.1111/j.1365-313X.2012.04907.x
Fornara F, de Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141:550
pubmed: 20434991 doi: 10.1016/j.cell.2010.04.024
Frame B, Warnberg K, Main M, Wang K (2015) Maize (Zea mays L.). In: Wang K (ed) Agrobacterium protocols, 3rd edn. Springer, New York, pp 101–117
doi: 10.1007/978-1-4939-1695-5_8
Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54:137–164
pubmed: 14502988 doi: 10.1146/annurev.arplant.54.031902.134921
Garcia-Maroto F, Carmona MJ, Garrido JA, Vilches-Ferron M, Rodriguez-Ruiz J, Alonso DL (2003) New roles for MADS-box genes in higher plants. Biol Plantarum 46:321–330
doi: 10.1023/A:1024353514081
Giovannoni JJ, Friedman H, Vrebalov J, Elitzer T (2013) Banana mads-box genes for banana ripening control. In: Google Patents. Available online at https://patents.google.com/patent/US20130036515A1/en . Accessed 3 June 2021
Gramzow L, Theissen G (2010a) A hitchhiker’s guide to the MADS world of plants. Genome Biol 11:214
pubmed: 20587009 pmcid: 2911102 doi: 10.1186/gb-2010-11-6-214
Gramzow L, Theissen G (2013) Phylogenomics of MADS-Box genes in plants—two opposing life styles in one gene family. Biology (basel) 2:1150–1164
Gramzow L, Theissen G (2015) Phylogenomics reveals surprising sets of essential and dispensable clades of MIKC(c)-group MADS-box genes in flowering plants. J Exp Zool B Mol Dev Evol 324:353–362
pubmed: 25678468 doi: 10.1002/jez.b.22598
Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steffens GL, Flippenanderson JL, Cook JC (1979) Brassinolide, a plant growth-promoting steroid isolated from brassica-napus pollen. Nature 281:216–217
doi: 10.1038/281216a0
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512
pubmed: 23845962 doi: 10.1038/nprot.2013.084
Heijmans K, Morel P, Vandenbussche M (2012) MADS-box genes and floral development: the dark side. J Exp Bot 63:5397–5404
pubmed: 22915743 doi: 10.1093/jxb/ers233
Hill CB, Li C (2016) Genetic architecture of flowering phenology in cereals and opportunities for crop improvement. Front Plant Sci 7:1906
pubmed: 28066466 pmcid: 5165254 doi: 10.3389/fpls.2016.01906
Hugouvieux V, Zubieta C (2018) MADS transcription factors cooperate: complexities of complex formation. J Exp Bot 69:1821–1823
pubmed: 29635482 pmcid: 6019057 doi: 10.1093/jxb/ery099
Kater MM, Dreni L, Colombo L (2006) Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot 57:3433–3444
pubmed: 16968881 doi: 10.1093/jxb/erl097
Kim SK, Chang SC, Lee EJ, Chung WS, Kim YS, Hwang S, Lee JS (2000) Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol 123:997–1004
pubmed: 10889248 pmcid: 59062 doi: 10.1104/pp.123.3.997
Kwantes M, Liebsch D, Verelst W (2012) How MIKC* MADS-Box genes originated and evidence for their conserved function throughout the evolution of vascular plant gametophytes. Mol Biol Evol 29:293–302
pubmed: 21813465 doi: 10.1093/molbev/msr200
Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61:2247–2254
pubmed: 20413527 doi: 10.1093/jxb/erq098
Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14:2366–2376
pubmed: 10995392 pmcid: 316936 doi: 10.1101/gad.813600
Lee S, Kim J, Han JJ, Han MJ, An G (2004) Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J 38:754–764
pubmed: 15144377 doi: 10.1111/j.1365-313X.2004.02082.x
Liu X, Zhu Y, Zhai H, Cai H, Ji W, Luo X, Li J, Bai X (2012) AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner. Biochem Biophys Res Commun 422:710–715
pubmed: 22627139 doi: 10.1016/j.bbrc.2012.05.064
Liu Y, Cui S, Wu F, Yan S, Lin X, Du X, Chong K, Schilling S, Theissen G, Meng Z (2013) Functional conservation of MIKC*-Type MADS box genes in Arabidopsis and rice pollen maturation. Plant Cell 25:1288–1303
pubmed: 23613199 pmcid: 3663268 doi: 10.1105/tpc.113.110049
Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449
pubmed: 15972284 doi: 10.1093/bioinformatics/bti551
Masiero S, Colombo L, Grini PE, Schnittger A, Kater MM (2011) The emerging importance of type I MADS box transcription factors for plant reproduction. Plant Cell 23:865–872
pubmed: 21378131 pmcid: 3082269 doi: 10.1105/tpc.110.081737
McCarthy EW, Mohamed A, Litt A (2015) Functional divergence of APETALA1 and FRUITFULL is due to changes in both regulation and coding sequence. Front Plant Sci 6:1076
pubmed: 26697035 pmcid: 4667048 doi: 10.3389/fpls.2015.01076
Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17:2255–2270
pubmed: 16006578 pmcid: 1182487 doi: 10.1105/tpc.105.033464
Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623
pubmed: 12940954 doi: 10.1046/j.1365-313X.2003.01833.x
Munster T, Deleu W, Wingen LU, Ouzunova M, Cacharron J, Faigl W, Werth S, Kim JTT, Saedler H, Theissen G (2002) Maize MADS-box genes galore. Maydica 47:287–301
Mussig C, Shin GH, Altmann T (2003) Brassinosteroids promote root growth in Arabidopsis. Plant Physiol 133:1261–1271
pubmed: 14526105 pmcid: 281621 doi: 10.1104/pp.103.028662
Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104:16450–16455
pubmed: 17923671 pmcid: 2034233 doi: 10.1073/pnas.0707193104
Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2:186–195
pubmed: 11256070 doi: 10.1038/35056041
Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551
pubmed: 12837945 pmcid: 165399 doi: 10.1105/tpc.011544
Paz MM, Shou HX, Guo ZB, Zhang ZY, Banerjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136:167–179
doi: 10.1023/B:EUPH.0000030670.36730.a4
Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O (2010) An antagonistic pair of ft homologs mediates the control of flowering time in sugar beet. Science 330:1397–1400
pubmed: 21127254 doi: 10.1126/science.1197004
Podila GK, Cseke LJ, Sen B, Karnosky DF (2005) Application of aspen mads-box genes to alter reproduction and development in trees. In: Google Patents. Available online at https://patents.google.com/patent/US20040019933A1/en . Accessed 3 June 2021
Poppenberger B, Fujioka S, Soeno K, George GL, Vaistij FE, Hiranuma S, Seto H, Takatsuto S, Adam G, Yoshida S, Bowles D (2005) The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc Natl Acad Sci USA 102:15253–15258
pubmed: 16214889 pmcid: 1257699 doi: 10.1073/pnas.0504279102
Ryu CH, Lee S, Cho LH, Kim SL, Lee YS, Choi SC, Jeong HJ, Yi J, Park SJ, Han CD, An G (2009) OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ 32:1412–1427
pubmed: 19558411 doi: 10.1111/j.1365-3040.2009.02008.x
Schilling S, Pan S, Kennedy A, Melzer R (2018) MADS-box genes and crop domestication: the jack of all traits. J Exp Bot 69:1447–1469
pubmed: 29474735 doi: 10.1093/jxb/erx479
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504
pubmed: 14597658 pmcid: 403769 doi: 10.1101/gr.1239303
Smaczniak C, Immink RG, Angenent GC, Kaufmann K (2012) Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139:3081–3098
pubmed: 22872082 doi: 10.1242/dev.074674
Song G-Q, Chen Q (2018) Overexpression of the MADS-box gene K-domain increases the yield potential of blueberry. Plant Sci 276:10
doi: 10.1016/j.plantsci.2018.07.018
Song GQ, Walworth A, Zhao DY, Hildebrandt B, Leasia M (2013) Constitutive expression of the K-domain of a Vaccinium corymbosum SOC1-like (VcSOC1-K) MADS-box gene is sufficient to promote flowering in tobacco. Plant Cell Rep 32:1819–1826
pubmed: 23963585 doi: 10.1007/s00299-013-1495-1
Takatsuji H, Kapoor M (2002) Improvement of plant flower type targeting mads box gene. In: Google Patents. Available online at https://patents.google.com/patent/JP2002125684A/ja . Accessed 3 June 2021
Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17:776–790
pubmed: 15705958 pmcid: 1069698 doi: 10.1105/tpc.104.024950
Tapia-Lopez R, Garcia-Ponce B, Dubrovsky JG, Garay-Arroyo A, Perez-Ruiz RV, Kim SH, Acevedo F, Pelaz S, Alvarez-Buylla ER (2008) An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiol 146:1182–1192
pubmed: 18203871 pmcid: 2259045 doi: 10.1104/pp.107.108647
Teo ZWN, Zhou W, Shen L (2019) Dissecting the function of MADS-Box transcription factors in orchid reproductive development. Front Plant Sci 10:1474
pubmed: 31803211 pmcid: 6872546 doi: 10.3389/fpls.2019.01474
Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822
pubmed: 20150489 doi: 10.1126/science.1183700
Theissen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43:484–516
pubmed: 8875863 doi: 10.1007/BF02337521
Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149
pubmed: 10688133 doi: 10.1023/A:1006332105728
Trevaskis B (2018) Developmental pathways are blueprints for designing successful crops. Front Plant Sci 9:745
pubmed: 29922318 pmcid: 5996307 doi: 10.3389/fpls.2018.00745
Verelst W, Saedler H, Munster T (2007) MIKC* MADS-protein complexes bind motifs enriched in the proximal region of late pollen-specific Arabidopsis promoters. Plant Physiol 143:447–460
pubmed: 17071640 pmcid: 1761959 doi: 10.1104/pp.106.089805
Walworth AE, Chai B, Song GQ (2016) Transcript profile of flowering regulatory genes in VcFT-overexpressing blueberry plants. PLoS ONE 11:e0156993
pubmed: 27271296 pmcid: 4896415 doi: 10.1371/journal.pone.0156993
Wellmer F, Riechmann JL (2010) Gene networks controlling the initiation of flower development. Trends Genet 26:519–527
pubmed: 20947199 doi: 10.1016/j.tig.2010.09.001
Wu J, Lawit SJ, Weers B, Sun J, Mongar N, Van Hemert J, Melo R, Meng X, Rupe M, Clapp J, Haug Collet K, Trecker L, Roesler K, Peddicord L, Thomas J, Hunt J, Zhou W, Hou Z, Wimmer M, Jantes J, Mo H, Liu L, Wang Y, Walker C, Danilevskaya O, Lafitte RH, Schussler JR, Shen B, Habben JE (2019) Overexpression of zmm28 increases maize grain yield in the field. Proc Natl Acad Sci USA 116:23850–23858
Xu P, Chen H, Ying L, Cai W (2016) AtDOF5.4/OBP4, a DOF transcription factor gene that negatively regulates cell cycle progression and cell expansion in Arabidopsis thaliana. Sci Rep 6:27705
pubmed: 27297966 pmcid: 4906354 doi: 10.1038/srep27705
Yadava P, Abhishek A, Singh R, Singh I, Kaul T, Pattanayak A, Agrawal PK (2016) Advances in maize transformation technologies and development of transgenic maize. Front Plant Sci 7:1949
pubmed: 28111576
Yoo SK, Chung KS, Kim J, Lee JH, Hong SM, Yoo SJ, Yoo SY, Lee JS, Ahn JH (2005) CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiol 139:770–778
pubmed: 16183837 pmcid: 1255994 doi: 10.1104/pp.105.066928
Yu LH, Miao ZQ, Qi GF, Wu J, Cai XT, Mao JL, Xiang CB (2014) MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Mol Plant 7:1653–1669
pubmed: 25122697 pmcid: 4228986 doi: 10.1093/mp/ssu088
Zamboni A, Pierantoni L, De Franceschi P (2008) Total RNA extraction from strawberry tree (Arbutus unedo) and several other woody plants. Iforest 1:122–125
doi: 10.3832/ifor0465-0010122
Zhang HM, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409
pubmed: 9430595 doi: 10.1126/science.279.5349.407

Auteurs

Guo-Qing Song (GQ)

Department of Horticulture, Plant Biotechnology Resource and Outreach Center, Michigan State University, East Lansing, MI, 48824, USA. songg@msu.edu.

Xue Han (X)

Department of Horticulture, Plant Biotechnology Resource and Outreach Center, Michigan State University, East Lansing, MI, 48824, USA.

John T Ryner (JT)

Department of Horticulture, Plant Biotechnology Resource and Outreach Center, Michigan State University, East Lansing, MI, 48824, USA.

Addie Thompson (A)

Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.

Kan Wang (K)

Department of Agronomy, Crop Bioengineering Center, Iowa State University, Ames, IA, 50011-1051, USA.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Animals Natural Killer T-Cells Mice Adipose Tissue Lipid Metabolism
Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases

Classifications MeSH