Mechanisms driving chromosomal translocations: lost in time and space.
Journal
Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
received:
02
02
2021
accepted:
21
05
2021
revised:
07
05
2021
pubmed:
10
6
2021
medline:
22
12
2021
entrez:
9
6
2021
Statut:
ppublish
Résumé
Translocations arise when an end of one chromosome break is mistakenly joined to an end from a different chromosome break. Since translocations can lead to developmental disease and cancer, it is important to understand the mechanisms leading to these chromosome rearrangements. We review how characteristics of the sources and the cellular responses to chromosome breaks contribute to the accumulation of multiple chromosome breaks at the same moment in time. We also discuss the important role for chromosome break location; how translocation potential is impacted by the location of chromosome breaks both within chromatin and within the nucleus, as well as the effect of altered mobility of chromosome breaks. A common theme in work addressing both temporal and spatial contributions to translocation is that there is no shortage of examples of factors that promote translocation in one context, but have no impact or the opposite impact in another. Accordingly, a clear message for future work on translocation mechanism is that unlike normal DNA metabolic pathways, it isn't easily modeled as a simple, linear pathway that is uniformly followed regardless of differing cellular contexts.
Identifiants
pubmed: 34103687
doi: 10.1038/s41388-021-01856-9
pii: 10.1038/s41388-021-01856-9
pmc: PMC8238880
mid: NIHMS1707605
doi:
Substances chimiques
Chromatin
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Research Support, U.S. Gov't, Non-P.H.S.
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
4263-4270Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : Intramural Research Program
Organisme : NCI NIH HHS
ID : R01 CA222092
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA247773
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA097096
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA097096
Pays : United States
Références
Li Y, Roberts ND, Wala JA, Shapira O, Schumacher SE, Kumar K, et al. Patterns of somatic structural variation in human cancer genomes. Nature. 2020;578:112–21.
pubmed: 32025012
pmcid: 7025897
doi: 10.1038/s41586-019-1913-9
Zhang F, Khajavi M, Connolly AM, Towne CF, Batish SD, Lupski JR. The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat Genet. 2009;41:849–53.
pubmed: 19543269
pmcid: 4461229
doi: 10.1038/ng.399
Sakofsky CJ, Malkova A. Break induced replication in eukaryotes: mechanisms, functions, and consequences. Crit Rev Biochem Mol Biol. 2017;52:395–413.
pubmed: 28427283
pmcid: 6763318
doi: 10.1080/10409238.2017.1314444
Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526:75–81.
pubmed: 26432246
pmcid: 4617611
doi: 10.1038/nature15394
Gao S, Honey S, Futcher B, Grollman AP. The non-homologous end-joining pathway of S. cerevisiae works effectively in G1-phase cells, and religates cognate ends correctly and non-randomly. DNA Repair (Amst). 2016;42:1–10.
doi: 10.1016/j.dnarep.2016.03.013
Lee K, Zhang Y, Lee SE. Saccharomyces cerevisiae ATM orthologue suppresses break-induced chromosome translocations. Nature. 2008;454:543–6.
pubmed: 18650924
doi: 10.1038/nature07054
Richardson C, Moynahan ME, Jasin M. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 1998;12:3831–42.
pubmed: 9869637
pmcid: 317271
doi: 10.1101/gad.12.24.3831
Zhang Y, McCord RP, Ho YJ, Lajoie BR, Hildebrand DG, Simon AC, et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell. 2012;148:908–21.
pubmed: 22341456
pmcid: 3320767
doi: 10.1016/j.cell.2012.02.002
Vilenchik MM, Knudson AG. Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci USA. 2003;100:12871–6.
pubmed: 14566050
pmcid: 240711
doi: 10.1073/pnas.2135498100
Lobrich M, Cooper PK, Rydberg B. Joining of correct and incorrect DNA ends at double-strand breaks produced by high-linear energy transfer radiation in human fibroblasts. Radiat Res. 1998;150:619–26.
pubmed: 9840181
doi: 10.2307/3579884
Brunet E, Jasin M. Induction of chromosomal translocations with CRISPR-Cas9 and other nucleases: understanding the repair mechanisms that give rise to translocations. Adv Exp Med Biol. 2018;1044:15–25.
pubmed: 29956288
pmcid: 6333474
doi: 10.1007/978-981-13-0593-1_2
Morton LM, Karyadi DM, Stewart C, Bogdanova TI, Dawson ET, Steinberg MK, et al. Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident. Science. 2021;372:eabg2538.
pubmed: 33888599
pmcid: 9022889
doi: 10.1126/science.abg2538
Waters CA, Strande NT, Wyatt DW, Pryor JM, Ramsden DA. Nonhomologous end joining: a good solution for bad ends. DNA Repair (Amst). 2014;17:39–51.
doi: 10.1016/j.dnarep.2014.02.008
Ramsden DA, Gellert M. Formation and resolution of double-strand break intermediates in V(D)J rearrangement. Genes Dev. 1995;9:2409–20.
pubmed: 7557392
doi: 10.1101/gad.9.19.2409
Ramsden DA, Paull TT, Gellert M. Cell-free V(D)J recombination. Nature. 1997;388:488–91.
pubmed: 9242409
doi: 10.1038/41351
Pannunzio NR, Lieber MR. Concept of DNA lesion longevity and chromosomal translocations. Trends Biochem Sci. 2018;43:490–8.
pubmed: 29735400
pmcid: 6014902
doi: 10.1016/j.tibs.2018.04.004
Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 2014;507:62–7.
pubmed: 24476820
pmcid: 4106473
doi: 10.1038/nature13011
Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. 2016;34:339–44.
pubmed: 26789497
doi: 10.1038/nbt.3481
Stracker TH, Petrini JH. The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol. 2011;12:90–103.
pubmed: 21252998
pmcid: 3905242
doi: 10.1038/nrm3047
Bredemeyer AL, Huang CY, Walker LM, Bassing CH, Sleckman BP. Aberrant V(D)J recombination in ataxia telangiectasia mutated-deficient lymphocytes is dependent on nonhomologous DNA end joining. J Immunol. 2008;181:2620–5.
pubmed: 18684952
doi: 10.4049/jimmunol.181.4.2620
Chen C, Kolodner RD. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet. 1999;23:81–5.
pubmed: 10471504
doi: 10.1038/12687
Gunn A, Bennardo N, Cheng A, Stark JM. Correct end use during end joining of multiple chromosomal double strand breaks is influenced by repair protein RAD50, DNA-dependent protein kinase DNA-PKcs, and transcription context. J Biol Chem. 2011;286:42470–82.
pubmed: 22027841
pmcid: 3234933
doi: 10.1074/jbc.M111.309252
Bredemeyer AL, Sharma GG, Huang CY, Helmink BA, Walker LM, Khor KC, et al. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature. 2006;442:466–70.
pubmed: 16799570
doi: 10.1038/nature04866
Callen E, Jankovic M, Difilippantonio S, Daniel JA, Chen HT, Celeste A, et al. ATM prevents the persistence and propagation of chromosome breaks in lymphocytes. Cell. 2007;130:63–75.
pubmed: 17599403
doi: 10.1016/j.cell.2007.06.016
Bunting SF, Nussenzweig A. End-joining, translocations and cancer. Nat Rev Cancer. 2013;13:443–54.
pubmed: 23760025
pmcid: 5724777
doi: 10.1038/nrc3537
Caldecott KW. Protein ADP-ribosylation and the cellular response to DNA strand breaks. DNA Repair (Amst). 2014;19:108–13.
doi: 10.1016/j.dnarep.2014.03.021
Fisher AE, Hochegger H, Takeda S, Caldecott KW Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase. Mol Cell Biol. 2007; 27: 5597–605.
Audebert M, Salles B, Calsou P Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem. 2004; 279: 55117–26.
Rulten SL, Fisher AE, Robert I, Zuma MC, Rouleau M, Ju L, et al. PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol Cell. 2011;41:33–45.
pubmed: 21211721
doi: 10.1016/j.molcel.2010.12.006
Layer JV, Cleary JP, Brown AJ, Stevenson KE, Morrow SN, Van Scoyk A, et al. Parp3 promotes long-range end joining in murine cells. Proc Natl Acad Sci USA. 2018;115:10076–81.
pubmed: 30213852
pmcid: 6176633
doi: 10.1073/pnas.1801591115
Wray J, Williamson EA, Singh SB, Wu Y, Cogle CR, Weinstock DM, et al. PARP1 is required for chromosomal translocations. Blood. 2013;121:4359–65.
pubmed: 23568489
pmcid: 3663429
doi: 10.1182/blood-2012-10-460527
Day TA, Layer JV, Cleary JP, Guha S, Stevenson KE, Tivey T, et al. PARP3 is a promoter of chromosomal rearrangements and limits G4 DNA. Nat Commun. 2017;8:15110.
pubmed: 28447610
pmcid: 5414184
doi: 10.1038/ncomms15110
Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20:698–714.
pubmed: 31263220
pmcid: 7315405
doi: 10.1038/s41580-019-0152-0
Richardson C, Jasin M. Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol Cell Biol. 2000;20:9068–75.
pubmed: 11074004
pmcid: 86559
doi: 10.1128/MCB.20.23.9068-9075.2000
Boboila C, Jankovic M, Yan CT, Wang JH, Wesemann DR, Zhang T, et al. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70. Proc Natl Acad Sci USA. 2010;107:3034–9.
pubmed: 20133803
pmcid: 2840344
doi: 10.1073/pnas.0915067107
Boboila C, Yan C, Wesemann DR, Jankovic M, Wang JH, Manis J, et al. Alternative end-joining catalyzes class switch recombination in the absence of both Ku70 and DNA ligase 4. J Exp Med. 2010;207:417–27.
pubmed: 20142431
pmcid: 2822597
doi: 10.1084/jem.20092449
Difilippantonio MJ, Zhu J, Chen HT, Meffre E, Nussenzweig MC, Max EE, et al. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature. 2000;404:510–4.
pubmed: 10761921
pmcid: 4721590
doi: 10.1038/35006670
Weinstock DM, Brunet E, Jasin M. Formation of NHEJ-derived reciprocal chromosomal translocations does not require Ku70. Nat Cell Biol. 2007;9:978–81.
pubmed: 17643113
pmcid: 3065497
doi: 10.1038/ncb1624
Simsek D, Brunet E, Wong SY, Katyal S, Gao Y, McKinnon PJ, et al. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet. 2011;7:e1002080.
pubmed: 21655080
pmcid: 3107202
doi: 10.1371/journal.pgen.1002080
Zhang Y, Jasin M. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat Struct Mol Biol. 2011;18:80–4.
pubmed: 21131978
doi: 10.1038/nsmb.1940
Ghezraoui H, Piganeau M, Renouf B, Renaud JB, Sallmyr A, Ruis B, et al. Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol Cell. 2014;55:829–42.
pubmed: 25201414
pmcid: 4398060
doi: 10.1016/j.molcel.2014.08.002
Anderson CW, Lees-Miller SP. The nuclear serine/threonine protein kinase DNA-PK. Crit Rev Eukaryot Gene Expr. 1992;2:283–314.
pubmed: 1486241
Tuteja R, Tuteja N. Ku autoantigen: a multifunctional DNA-binding protein. Crit Rev Biochem Mol Biol. 2000;35:1–33.
pubmed: 10755664
doi: 10.1080/10409230091169177
Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A. Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination. Nature. 2015;518:254–7.
pubmed: 25642960
pmcid: 4718306
doi: 10.1038/nature14157
Yousefzadeh MJ, Wyatt DW, Takata K, Mu Y, Hensley SC, Tomida J, et al. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLoS Genet. 2014;10:e1004654.
pubmed: 25275444
pmcid: 4183433
doi: 10.1371/journal.pgen.1004654
Shima N, Munroe RJ, Schimenti JC. The mouse genomic instability mutation chaos1 is an allele of Polq that exhibits genetic interaction with Atm. Mol Cell Biol. 2004;24:10381–9.
pubmed: 15542845
pmcid: 529050
doi: 10.1128/MCB.24.23.10381-10389.2004
Wyatt DW, Feng W, Conlin MP, Yousefzadeh MJ, Roberts SA, Mieczkowski P, et al. Essential roles for polymerase theta-mediated end joining in the repair of chromosome breaks. Mol Cell. 2016;63:662–73.
pubmed: 27453047
pmcid: 4992412
doi: 10.1016/j.molcel.2016.06.020
Yu W, Lescale C, Babin L, Bedora-Faure M, Lenden-Hasse H, Baron L, et al. Repair of G1 induced DNA double-strand breaks in S-G2/M by alternative NHEJ. Nat Commun. 2020;11:5239.
pubmed: 33067475
pmcid: 7567796
doi: 10.1038/s41467-020-19060-w
Liang Z, Kumar V, Le Bouteiller M, Zurita J, Kenrick J, Lin SG et al. Ku70 suppresses alternative end-joining in G1-arrested progenitor B cells. bioRxiv 2021: 2021.2002.2020.432121.
Carvajal-Garcia J, Cho JE, Carvajal-Garcia P, Feng W, Wood RD, Sekelsky J, et al. Mechanistic basis for microhomology identification and genome scarring by polymerase theta. Proc Natl Acad Sci USA. 2020;117:8476–85.
pubmed: 32234782
pmcid: 7165422
doi: 10.1073/pnas.1921791117
Kramara J, Osia B, Malkova A. Break-induced replication: the where, the why, and the how. Trends Genet. 2018;34:518–31.
pubmed: 29735283
doi: 10.1016/j.tig.2018.04.002
Pannunzio NR, Li S, Watanabe G, Lieber MR. Non-homologous end joining often uses microhomology: implications for alternative end joining. DNA Repair (Amst). 2014;17:74–80.
doi: 10.1016/j.dnarep.2014.02.006
Lu G, Duan J, Shu S, Wang X, Gao L, Guo J, et al. Ligase I and ligase III mediate the DNA double-strand break ligation in alternative end-joining. Proc Natl Acad Sci USA. 2016;113:1256–60.
pubmed: 26787905
pmcid: 4747774
doi: 10.1073/pnas.1521597113
Hanzlikova H, Gittens W, Krejcikova K, Zeng Z, Caldecott KW. Overlapping roles for PARP1 and PARP2 in the recruitment of endogenous XRCC1 and PNKP into oxidized chromatin. Nucleic Acids Res. 2017;45:2546–57.
pubmed: 27965414
Pommier Y, Sun Y, Huang SN, Nitiss JL. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat Rev Mol Cell Biol. 2016;17:703–21.
pubmed: 27649880
doi: 10.1038/nrm.2016.111
Muntean AG, Hess JL. The pathogenesis of mixed-lineage leukemia. Annu Rev Pathol. 2012;7:283–301.
pubmed: 22017583
doi: 10.1146/annurev-pathol-011811-132434
Canela A, Maman Y, Huang SN, Wutz G, Tang W, Zagnoli-Vieira G, et al. Topoisomerase II-induced chromosome breakage and translocation is determined by chromosome architecture and transcriptional activity. Mol Cell. 2019;75:252–66. e258
pubmed: 31202577
pmcid: 8170508
doi: 10.1016/j.molcel.2019.04.030
Gothe HJ, Bouwman BAM, Gusmao EG, Piccinno R, Petrosino G, Sayols S, et al. Spatial chromosome folding and active transcription drive DNA fragility and formation of oncogenic MLL translocations. Mol Cell. 2019;75:267–83. e212
pubmed: 31202576
doi: 10.1016/j.molcel.2019.05.015
Gomez-Herreros F, Zagnoli-Vieira G, Ntai I, Martinez-Macias MI, Anderson RM, Herrero-Ruiz A, et al. TDP2 suppresses chromosomal translocations induced by DNA topoisomerase II during gene transcription. Nat Commun. 2017;8:233.
pubmed: 28794467
pmcid: 5550487
doi: 10.1038/s41467-017-00307-y
Canela A, Maman Y, Jung S, Wong N, Callen E, Day A, et al. Genome organization drives chromosome fragility. Cell. 2017;170:507–21. e518.
pubmed: 28735753
pmcid: 6133249
doi: 10.1016/j.cell.2017.06.034
Uuskula-Reimand L, Hou H, Samavarchi-Tehrani P, Rudan MV, Liang M, Medina-Rivera A, et al. Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol. 2016;17:182.
pubmed: 27582050
pmcid: 5006368
doi: 10.1186/s13059-016-1043-8
Lobachev K, Vitriol E, Stemple J, Resnick MA, Bloom K. Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr Biol. 2004;14:2107–12.
pubmed: 15589152
doi: 10.1016/j.cub.2004.11.051
Soutoglou E, Dorn JF, Sengupta K, Jasin M, Nussenzweig A, Ried T, et al. Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol. 2007;9:675–82.
pubmed: 17486118
pmcid: 2442898
doi: 10.1038/ncb1591
Roix JJ, McQueen PG, Munson PJ, Parada LA, Misteli T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet. 2003;34:287–91.
pubmed: 12808455
doi: 10.1038/ng1177
Roukos V, Voss TC, Schmidt CK, Lee S, Wangsa D, Misteli T. Spatial dynamics of chromosome translocations in living cells. Science. 2013;341:660–4.
pubmed: 23929981
pmcid: 6324928
doi: 10.1126/science.1237150
Sunder S, Wilson TE. Frequency of DNA end joining in trans is not determined by the predamage spatial proximity of double-strand breaks in yeast. Proc Natl Acad Sci USA. 2019;116:9481–90.
pubmed: 31019070
pmcid: 6510992
doi: 10.1073/pnas.1818595116
Dion V, Kalck V, Horigome C, Towbin BD, Gasser SM. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat Cell Biol. 2012;14:502–9.
pubmed: 22484486
doi: 10.1038/ncb2465
Mine-Hattab J, Rothstein R. Increased chromosome mobility facilitates homology search during recombination. Nat Cell Biol. 2012;14:510–7.
pubmed: 22484485
doi: 10.1038/ncb2472
Krawczyk PM, Borovski T, Stap J, Cijsouw T, ten Cate R, Medema JP, et al. Chromatin mobility is increased at sites of DNA double-strand breaks. J Cell Sci. 2012;125:2127–33.
pubmed: 22328517
Kruhlak MJ, Celeste A, Dellaire G, Fernandez-Capetillo O, Muller WG, McNally JG, et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol. 2006;172:823–34.
pubmed: 16520385
pmcid: 2063727
doi: 10.1083/jcb.200510015
Dimitrova N, Chen YC, Spector DL, de Lange T. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature. 2008;456:524–8.
pubmed: 18931659
pmcid: 2613650
doi: 10.1038/nature07433
Lottersberger F, Karssemeijer RA, Dimitrova N, de Lange T. 53BP1 and the LINC complex promote microtubule-dependent DSB mobility and DNA repair. Cell. 2015;163:880–93.
pubmed: 26544937
pmcid: 4636737
doi: 10.1016/j.cell.2015.09.057
Difilippantonio S, Gapud E, Wong N, Huang CY, Mahowald G, Chen HT, et al. 53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Nature. 2008;456:529–33.
pubmed: 18931658
pmcid: 3596817
doi: 10.1038/nature07476
Cho NW, Dilley RL, Lampson MA, Greenberg RA. Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell. 2014;159:108–21.
pubmed: 25259924
pmcid: 4177039
doi: 10.1016/j.cell.2014.08.030
Aten JA, Stap J, Krawczyk PM, van Oven CH, Hoebe RA, Essers J, et al. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science. 2004;303:92–5.
pubmed: 14704429
doi: 10.1126/science.1088845
Aymard F, Aguirrebengoa M, Guillou E, Javierre BM, Bugler B, Arnould C, et al. Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes. Nat Struct Mol Biol. 2017;24:353–61.
pubmed: 28263325
pmcid: 5385132
doi: 10.1038/nsmb.3387
Schrank BR, Aparicio T, Li Y, Chang W, Chait BT, Gundersen GG, et al. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature. 2018;559:61–6.
pubmed: 29925947
pmcid: 6145447
doi: 10.1038/s41586-018-0237-5
Whalen JM, Dhingra N, Wei L, Zhao X, Freudenreich CH. Relocation of collapsed forks to the nuclear pore complex depends on sumoylation of DNA repair proteins and permits Rad51 association. Cell Rep. 2020;31:107635.
pubmed: 32402281
pmcid: 7344339
doi: 10.1016/j.celrep.2020.107635
Caridi CP, D’Agostino C, Ryu T, Zapotoczny G, Delabaere L, Li X, et al. Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature. 2018;559:54–60.
pubmed: 29925946
pmcid: 6051730
doi: 10.1038/s41586-018-0242-8