Maternal fecal microbiome predicts gestational age, birth weight and neonatal growth in rural Zimbabwe.


Journal

EBioMedicine
ISSN: 2352-3964
Titre abrégé: EBioMedicine
Pays: Netherlands
ID NLM: 101647039

Informations de publication

Date de publication:
Jun 2021
Historique:
received: 21 12 2020
revised: 14 05 2021
accepted: 17 05 2021
pubmed: 18 6 2021
medline: 15 12 2021
entrez: 17 6 2021
Statut: ppublish

Résumé

Preterm birth and low birth weight (LBW) affect one in ten and one in seven livebirths, respectively, primarily in low-income and middle-income countries (LMIC) and are major predictors of poor child health outcomes. However, both have been recalcitrant to public health intervention. The maternal intestinal microbiome may undergo substantial changes during pregnancy and may influence fetal and neonatal health in LMIC populations. Within a subgroup of 207 mothers and infants enrolled in the SHINE trial in rural Zimbabwe, we performed shotgun metagenomics on 351 fecal specimens provided during pregnancy and at 1-month post-partum to investigate the relationship between the pregnancy gut microbiome and infant gestational age, birth weight, 1-month length-, and weight-for-age z-scores using extreme gradient boosting machines. Pregnancy gut microbiome taxa and metabolic functions predicted birth weight and WAZ at 1 month more accurately than gestational age and LAZ. Blastoscystis sp, Brachyspira sp and Treponeme carriage were high compared to Western populations. Resistant starch-degraders were important predictors of birth outcomes. Microbiome capacity for environmental sensing, vitamin B metabolism, and signalling predicted increased infant birth weight and neonatal growth; while functions involved in biofilm formation in response to nutrient starvation predicted reduced birth weight and growth. The pregnancy gut microbiome in rural Zimbabwe is characterized by resistant starch-degraders and may be an important metabolic target to improve birth weight. Bill and Melinda Gates Foundation, UK Department for International Development, Wellcome Trust, Swiss Agency for Development and Cooperation, US National Institutes of Health, and UNICEF.

Sections du résumé

BACKGROUND BACKGROUND
Preterm birth and low birth weight (LBW) affect one in ten and one in seven livebirths, respectively, primarily in low-income and middle-income countries (LMIC) and are major predictors of poor child health outcomes. However, both have been recalcitrant to public health intervention. The maternal intestinal microbiome may undergo substantial changes during pregnancy and may influence fetal and neonatal health in LMIC populations.
METHODS METHODS
Within a subgroup of 207 mothers and infants enrolled in the SHINE trial in rural Zimbabwe, we performed shotgun metagenomics on 351 fecal specimens provided during pregnancy and at 1-month post-partum to investigate the relationship between the pregnancy gut microbiome and infant gestational age, birth weight, 1-month length-, and weight-for-age z-scores using extreme gradient boosting machines.
FINDINGS RESULTS
Pregnancy gut microbiome taxa and metabolic functions predicted birth weight and WAZ at 1 month more accurately than gestational age and LAZ. Blastoscystis sp, Brachyspira sp and Treponeme carriage were high compared to Western populations. Resistant starch-degraders were important predictors of birth outcomes. Microbiome capacity for environmental sensing, vitamin B metabolism, and signalling predicted increased infant birth weight and neonatal growth; while functions involved in biofilm formation in response to nutrient starvation predicted reduced birth weight and growth.
INTERPRETATION CONCLUSIONS
The pregnancy gut microbiome in rural Zimbabwe is characterized by resistant starch-degraders and may be an important metabolic target to improve birth weight.
FUNDING BACKGROUND
Bill and Melinda Gates Foundation, UK Department for International Development, Wellcome Trust, Swiss Agency for Development and Cooperation, US National Institutes of Health, and UNICEF.

Identifiants

pubmed: 34139432
pii: S2352-3964(21)00214-0
doi: 10.1016/j.ebiom.2021.103421
pmc: PMC8217692
pii:
doi:

Substances chimiques

RNA, Ribosomal, 16S 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

103421

Subventions

Organisme : Wellcome Trust
ID : 206455/Z/17/Z
Pays : United Kingdom

Commentaires et corrections

Type : CommentIn

Informations de copyright

Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of Competing Interest None.

Références

Gut. 2015 Nov;64(11):1744-54
pubmed: 25500202
Br J Nutr. 2010 Jul;104(1):83-92
pubmed: 20205964
PeerJ. 2016 Jan 04;4:e1543
pubmed: 26788425
Circulation. 2019 Mar 12;139(11):1407-1421
pubmed: 30586752
J Infect Dis. 2020 Mar 28;221(8):1379-1386
pubmed: 31004129
Food Nutr Bull. 2008 Jun;29(2 Suppl):S101-11; discussion S112-5
pubmed: 18709885
Front Cell Infect Microbiol. 2019 Jun 26;9:224
pubmed: 31297341
Science. 2013 Feb 1;339(6119):548-54
pubmed: 23363771
PLoS Comput Biol. 2012;8(6):e1002358
pubmed: 22719234
Cell. 2019 Sep 19;179(1):59-73.e13
pubmed: 31539500
Nat Commun. 2015 Mar 25;6:6505
pubmed: 25807110
Am J Clin Nutr. 2008 Oct;88(4):894-9
pubmed: 18842773
Cell Host Microbe. 2019 Jun 12;25(6):789-802.e5
pubmed: 31194939
PLoS One. 2013;8(4):e59581
pubmed: 23573202
mBio. 2015 May 19;6(3):e00381-15
pubmed: 25991682
J Infect Dis. 2016 Feb 1;213(3):343-50
pubmed: 26265778
Genome Res. 2018 Oct;28(10):1467-1480
pubmed: 30232199
Clin Nutr. 2020 Dec;39(12):3618-3628
pubmed: 32340903
Appl Environ Microbiol. 2020 Apr 17;86(9):
pubmed: 32111592
N Engl J Med. 2020 Jul 23;383(4):321-333
pubmed: 32706533
Cochrane Database Syst Rev. 2018 Oct 01;10:CD001059
pubmed: 30277579
Transl Res. 2014 Aug;164(2):153-7
pubmed: 24530607
Nat Commun. 2019 Feb 22;10(1):905
pubmed: 30796211
Clin Infect Dis. 2015 Dec 15;61 Suppl 7:S738-44
pubmed: 26602302
Clin Sci (Lond). 2016 Nov 1;130(22):2073-2082
pubmed: 27439969
Sci Rep. 2019 Mar 20;9(1):4736
pubmed: 30894560
Front Microbiol. 2019 Oct 09;10:2305
pubmed: 31649646
Nutrients. 2011 Jan;3(1):118-34
pubmed: 22254078
Cell Host Microbe. 2019 Nov 13;26(5):666-679.e7
pubmed: 31607556
New Microbes New Infect. 2018 Nov 02;27:14-21
pubmed: 30555706
Nutr Res. 2019 Apr;64:39-48
pubmed: 30802721
FEMS Microbiol Rev. 2010 Nov;34(6):952-85
pubmed: 20412306
Physiol Genomics. 2016 Nov 1;48(11):826-834
pubmed: 27664183
Science. 2016 Feb 19;351(6275):
pubmed: 26912898
Science. 2020 Feb 28;367(6481):
pubmed: 32108090
Lancet Glob Health. 2019 Jan;7(1):e37-e46
pubmed: 30389451
Curr Microbiol. 2014 Apr;68(4):419-27
pubmed: 24258611
Cell Rep. 2016 Mar 8;14(9):2142-2153
pubmed: 26923597
Cell Host Microbe. 2019 May 8;25(5):668-680.e7
pubmed: 31071294
J Bacteriol. 2019 Oct 4;201(21):
pubmed: 31405919
Cell Host Microbe. 2018 Jul 11;24(1):146-154.e4
pubmed: 30001517
Diabetes. 2016 Aug;65(8):2214-23
pubmed: 27217482
Microbiology (Reading). 2001 May;147(Pt 5):1197-1212
pubmed: 11320123
Am J Clin Nutr. 2018 Oct 1;108(4):889-896
pubmed: 30247538
Front Public Health. 2020 Apr 15;8:99
pubmed: 32351922
Nat Commun. 2014 May 20;5:3889
pubmed: 24846660
mBio. 2019 Jan 29;10(1):
pubmed: 30696735
Front Pediatr. 2017 Aug 22;5:178
pubmed: 28879172
Bioinformatics. 2019 Jan 1;35(1):95-103
pubmed: 30561547
Appl Environ Microbiol. 2013 Jun;79(11):3494-502
pubmed: 23542626
Semin Fetal Neonatal Med. 2016 Apr;21(2):94-9
pubmed: 26936188
Pediatr Res. 2011 Feb;69(2):175-80
pubmed: 21076366
Hypertension. 2016 Oct;68(4):974-81
pubmed: 27528065
Science. 2011 Oct 7;334(6052):105-8
pubmed: 21885731
Nat Commun. 2014 Apr 15;5:3654
pubmed: 24736369
Nature. 2014 Jun 19;510(7505):417-21
pubmed: 24896187
Hypertension. 2012 Jan;59(1):136-44
pubmed: 22068875
Lancet. 2016 Sep 24;388(10051):1291-301
pubmed: 27673470
Front Neuroendocrinol. 2010 Oct;31(4):400-19
pubmed: 20347861
Mol Cell Endocrinol. 2001 Dec 20;185(1-2):93-8
pubmed: 11738798
Hypertension. 2019 Apr;73(4):829-838
pubmed: 30739537
Lancet Glob Health. 2019 Jan;7(1):e132-e147
pubmed: 30554749
Nat Methods. 2015 Oct;12(10):902-3
pubmed: 26418763
Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14691-6
pubmed: 20679230
Microbiol Mol Biol Rev. 2006 Dec;70(4):910-38
pubmed: 17158704
Lancet Glob Health. 2019 Jul;7(7):e849-e860
pubmed: 31103470
Curr Opin Psychiatry. 2012 Mar;25(2):141-8
pubmed: 22262028
Clin Infect Dis. 2015 Dec 15;61 Suppl 7:S685-702
pubmed: 26602296
Front Endocrinol (Lausanne). 2018 Nov 29;9:716
pubmed: 30559716
Cell Host Microbe. 2018 Jul 11;24(1):133-145.e5
pubmed: 30001516
BMJ Glob Health. 2017 Sep 22;2(3):e000389
pubmed: 29018583
Cell. 2015 Nov 19;163(5):1079-1094
pubmed: 26590418
Cell. 2019 Jan 24;176(3):649-662.e20
pubmed: 30661755
J Affect Disord. 2014 Apr;159:103-10
pubmed: 24679397
Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4666-71
pubmed: 20855611
NPJ Biofilms Microbiomes. 2020 Sep 11;6(1):32
pubmed: 32917878
Microbiol Spectr. 2015 Apr;3(2):MB-0003-2014
pubmed: 26104694
Nat Biotechnol. 2014 Aug;32(8):822-8
pubmed: 24997787
NPJ Biofilms Microbiomes. 2020 Jan 31;6(1):5
pubmed: 32005827
PLoS Med. 2015 Jul 07;12(7):e1001851
pubmed: 26151447
PLoS One. 2014 Nov 05;9(11):e111374
pubmed: 25372390
mBio. 2017 Oct 17;8(5):
pubmed: 29042495
EBioMedicine. 2019 Jan;39:497-509
pubmed: 30415891
Cell. 2012 Aug 3;150(3):470-80
pubmed: 22863002
PLoS One. 2014 Dec 05;9(12):e114277
pubmed: 25479553
Clin Microbiol Rev. 2017 Nov 29;31(1):
pubmed: 29187397
J Physiol Anthropol. 2016 Dec 12;35(1):31
pubmed: 27955701
Cell Death Dis. 2019 Sep 26;10(10):714
pubmed: 31558709
Microbiome. 2018 Nov 5;6(1):198
pubmed: 30396369
Appl Microbiol Biotechnol. 2017 May;101(10):4269-4278
pubmed: 28180916
Circulation. 2017 Mar 7;135(10):964-977
pubmed: 27927713
Appl Environ Microbiol. 2018 Nov 15;84(23):
pubmed: 30266729
Appl Environ Microbiol. 2019 Dec 13;86(1):
pubmed: 31653790
J Nutr. 2012 Jan;142(1):40-6
pubmed: 22113864
Clin Infect Dis. 2018 Sep 14;67(7):1103-1109
pubmed: 29590318
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):11060-5
pubmed: 26283357
BMC Neurosci. 2011 Mar 16;12:28
pubmed: 21410981
Clin Nutr. 2011 Apr;30(2):156-64
pubmed: 20970896
PLoS One. 2012;7(2):e31252
pubmed: 22359582

Auteurs

Ethan K Gough (EK)

Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. Electronic address: amee.manges@ubc.ca.

Thaddeus J Edens (TJ)

Devil's Staircase Consulting, West Vancouver, British Columbia, Canada.

Hyun Min Geum (HM)

School of Population and Public Health, University of British Columbia, Vancouver, Canada.

Iman Baharmand (I)

School of Population and Public Health, University of British Columbia, Vancouver, Canada.

Sandeep K Gill (SK)

School of Population and Public Health, University of British Columbia, Vancouver, Canada.

Ruairi C Robertson (RC)

Blizard Institute, Queen Mary University of London, London, UK.

Kuda Mutasa (K)

Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe.

Robert Ntozini (R)

Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe.

Laura E Smith (LE)

Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Department of Population Medicine and Diagnostics, Cornell University, Ithaca, NY, USA.

Bernard Chasekwa (B)

Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe.

Florence D Majo (FD)

Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe.

Naume V Tavengwa (NV)

Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe.

Batsirai Mutasa (B)

Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe.

Freddy Francis (F)

Department of Experimental Medicine, University of British Columbia, Canada.

Lynnea Carr (L)

Department of Microbiology and Immunology, University of British Columbia, Canada.

Joice Tome (J)

Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe.

Rebecca J Stoltzfus (RJ)

Goshen College, Goshen, Indiana, USA.

Lawrence H Moulton (LH)

Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.

Andrew J Prendergast (AJ)

Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Blizard Institute, Queen Mary University of London, London, UK; Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe.

Jean H Humphrey (JH)

Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Blizard Institute, Queen Mary University of London, London, UK.

Amee R Manges (AR)

School of Population and Public Health, University of British Columbia, Vancouver, Canada; British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada.

Shine Trial Team (ST)

Members of the SHINE Trial team who are not named authors are listed in https://academic.oup.com/cid/article/61/suppl_7/S685/358186.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH