An Untargeted Metabolomics Approach for Correlating Pulse Crop Seed Coat Polyphenol Profiles with Antioxidant Capacity and Iron Chelation Ability.
Antioxidants
/ analysis
Biflavonoids
/ analysis
Biological Availability
Catechin
/ analysis
Cicer
/ chemistry
Correlation of Data
Flavonoids
/ analysis
Flavonols
/ analysis
Inhibitory Concentration 50
Iron Chelating Agents
/ chemistry
Lens Plant
/ chemistry
Mass Spectrometry
Metabolomics
/ methods
Phenols
/ analysis
Polyphenols
/ analysis
Proanthocyanidins
/ analysis
Seeds
/ chemistry
Tannins
/ analysis
Vicia faba
/ chemistry
anthocyanins
antioxidant activity
flavan-3-ols
iron binding
proanthocyanidins
pulse crops
untargeted metabolomics
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
23 Jun 2021
23 Jun 2021
Historique:
received:
31
05
2021
revised:
17
06
2021
accepted:
17
06
2021
entrez:
2
7
2021
pubmed:
3
7
2021
medline:
22
7
2021
Statut:
epublish
Résumé
Pulse crop seed coats are a sustainable source of antioxidant polyphenols, but are typically treated as low-value products, partly because some polyphenols reduce iron bioavailability in humans. This study correlates antioxidant/iron chelation capabilities of diverse seed coat types from five major pulse crops (common bean, lentil, pea, chickpea and faba bean) with polyphenol composition using mass spectrometry. Untargeted metabolomics was used to identify key differences and a hierarchical analysis revealed that common beans had the most diverse polyphenol profiles among these pulse crops. The highest antioxidant capacities were found in seed coats of black bean and all tannin lentils, followed by maple pea, however, tannin lentils showed much lower iron chelation among these seed coats. Thus, tannin lentils are more desirable sources as natural antioxidants in food applications, whereas black bean and maple pea are more suitable sources for industrial applications. Regardless of pulse crop, proanthocyanidins were primary contributors to antioxidant capacity, and to a lesser extent, anthocyanins and flavan-3-ols, whereas glycosylated flavonols contributed minimally. Higher iron chelation was primarily attributed to proanthocyanidin composition, and also myricetin 3-
Identifiants
pubmed: 34201792
pii: molecules26133833
doi: 10.3390/molecules26133833
pmc: PMC8270320
pii:
doi:
Substances chimiques
Antioxidants
0
Biflavonoids
0
Flavonoids
0
Flavonols
0
Iron Chelating Agents
0
Phenols
0
Polyphenols
0
Proanthocyanidins
0
Tannins
0
proanthocyanidin
18206-61-6
procyanidin
4852-22-6
myricetin
76XC01FTOJ
Catechin
8R1V1STN48
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : external ID: IRCPJ 395994-14/ IRCSA 395993-14
Références
Molecules. 2020 Jan 24;25(3):
pubmed: 31991658
ChemSusChem. 2018 Nov 23;11(22):3975-3991
pubmed: 30204941
J Agric Food Chem. 2015 Jul 1;63(25):5950-6
pubmed: 26044037
J Food Sci. 2010 Sep;75(7):C619-25
pubmed: 21535528
Rapid Commun Mass Spectrom. 2012 May 15;26(9):1123-33
pubmed: 22467463
Biology (Basel). 2021 Apr 28;10(5):
pubmed: 33924913
J Agric Food Chem. 2013 Aug 28;61(34):8104-9
pubmed: 23947804
Biomed Res Int. 2014;2014:761264
pubmed: 24587990
Food Res Int. 2020 Nov;137:109531
pubmed: 33233161
Biochem Pharmacol. 1996 Oct 11;52(7):1033-9
pubmed: 8831722
Oxid Med Cell Longev. 2016;2016:7432797
pubmed: 27738491
Perspect Clin Res. 2016 Oct-Dec;7(4):187-190
pubmed: 27843795
J Nutr. 2010 Nov;140(11):1977-82
pubmed: 20861210
J Nat Prod. 2017 May 26;80(5):1310-1317
pubmed: 28448137
Metabolomics. 2007 Sep;3(3):211-221
pubmed: 24039616
Anal Biochem. 1996 Jul 15;239(1):70-6
pubmed: 8660627
Free Radic Biol Med. 1996;20(7):933-56
pubmed: 8743980
J Agric Food Chem. 2010 Jun 23;58(12):7423-31
pubmed: 20550219
Redox Rep. 2005;10(5):257-64
pubmed: 16354414
Cold Spring Harb Perspect Med. 2013 Jul 01;3(7):
pubmed: 23613366
Evid Based Complement Alternat Med. 2014;2014:136203
pubmed: 24772177
Food Chem Toxicol. 2011 Sep;49(9):2005-12
pubmed: 21601612
Int J Mol Sci. 2019 May 29;20(11):
pubmed: 31146372
J Nutr Biochem. 2002 Oct;13(10):572-584
pubmed: 12550068
Molecules. 2016 Feb 09;21(2):
pubmed: 26867192
Food Chem. 2017 Jan 1;214:515-522
pubmed: 27507505
J Mass Spectrom. 2003 Dec;38(12):1272-80
pubmed: 14696209
Food Chem. 2013 Jun 1;138(2-3):1670-81
pubmed: 23411297
Bioorg Med Chem. 2013 Jun 1;21(11):3348-55
pubmed: 23623675
J Chromatogr B Analyt Technol Biomed Life Sci. 2014 Oct 15;969:149-61
pubmed: 25173496
Redox Rep. 1999;4(1-2):13-6
pubmed: 10714270
Free Radic Biol Med. 2003 Jan 1;34(1):84-92
pubmed: 12498983
Nat Protoc. 2007;2(4):875-7
pubmed: 17446889
Plant Sci. 2012 Nov;196:67-76
pubmed: 23017900
Food Chem. 2018 Oct 30;264:471-475
pubmed: 29853403
Phytother Res. 2002 May;16(3):232-5
pubmed: 12164267
Anal Biochem. 1971 Apr;40(2):450-8
pubmed: 5551554
Crit Rev Food Sci Nutr. 2021;61(7):1130-1151
pubmed: 32338035
PLoS One. 2016 Oct 27;11(10):e0164624
pubmed: 27788158
J Food Sci Technol. 2017 Mar;54(4):858-870
pubmed: 28303037
Nat Prod Rep. 2009 Aug;26(8):1001-43
pubmed: 19636448
Compr Rev Food Sci Food Saf. 2019 May;18(3):775-797
pubmed: 33336925
J Agric Food Chem. 1998 May;46(5):1887-1892
pubmed: 29072454
Life Sci. 2006 May 15;78(25):2872-88
pubmed: 16325868
Future Med Chem. 2009 Dec;1(9):1643-70
pubmed: 21425984
Molecules. 2007 Jul 19;12(7):1496-547
pubmed: 17909504
J Agric Food Chem. 2020 Jul 15;68(28):7530-7540
pubmed: 32628473
Pharmaceutics. 2019 Apr 16;11(4):
pubmed: 30995762
Int J Biol Sci. 2015 Jun 11;11(8):982-91
pubmed: 26157352
Food Chem. 2008 May 15;108(2):519-32
pubmed: 26059130
J Agric Food Chem. 2011 Mar 23;59(6):2268-76
pubmed: 21332205
Phytochem Anal. 2020 Jul;31(4):458-471
pubmed: 31869515
J Cosmet Dermatol. 2020 Jan;19(1):33-37
pubmed: 31389656
Front Plant Sci. 2018 Jul 17;9:1022
pubmed: 30065739
Int J Mol Sci. 2017 Jan 25;18(2):
pubmed: 28125066
Redox Rep. 2002;7(1):41-6
pubmed: 11981454
Food Chem. 2011 Jun 15;126(4):1821-35
pubmed: 25213963
Front Nutr. 2018 Sep 21;5:87
pubmed: 30298133
Pharmacogn Rev. 2010 Jul;4(8):118-26
pubmed: 22228951
J Agric Food Chem. 2020 Mar 11;68(10):2836-2848
pubmed: 31117489
Molecules. 2016 Sep 11;21(9):
pubmed: 27626402
BMC Plant Biol. 2014 Sep 16;14:238
pubmed: 25928382