Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance.
Exopolysaccharides (EPS)
abiotic stress
biofilm
drought
metal
salinity
Journal
Journal of microbiology and biotechnology
ISSN: 1738-8872
Titre abrégé: J Microbiol Biotechnol
Pays: Korea (South)
ID NLM: 9431852
Informations de publication
Date de publication:
28 Aug 2021
28 Aug 2021
Historique:
received:
10
05
2021
revised:
17
06
2021
accepted:
17
06
2021
pubmed:
7
7
2021
medline:
15
12
2021
entrez:
6
7
2021
Statut:
ppublish
Résumé
Various abiotic stressors like drought, salinity, temperature, and heavy metals are major environmental stresses that affect agricultural productivity and crop yields all over the world. Continuous changes in climatic conditions put selective pressure on the microbial ecosystem to produce exopolysaccharides. Apart from soil aggregation, exopolysaccharide (EPS) production also helps in increasing water permeability, nutrient uptake by roots, soil stability, soil fertility, plant biomass, chlorophyll content, root and shoot length, and surface area of leaves while also helping maintain metabolic and physiological activities during drought stress. EPS-producing microbes can impart salt tolerance to plants by binding to sodium ions in the soil and preventing these ions from reaching the stem, thereby decreasing sodium absorption from the soil and increasing nutrient uptake by the roots. Biofilm formation in high-salinity soils increases cell viability, enhances soil fertility, and promotes plant growth and development. The third environmental stressor is presence of heavy metals in the soil due to improper industrial waste disposal practices that are toxic for plants. EPS production by soil bacteria can result in the biomineralization of metal ions, thereby imparting metal stress tolerance to plants. Finally, high temperatures can also affect agricultural productivity by decreasing plant metabolism, seedling growth, and seed germination. The present review discusses the role of exopolysaccharide-producing plant growth-promoting bacteria in modulating plant growth and development in plants and alleviating extreme abiotic stress condition. The review suggests exploring the potential of EPS-producing bacteria for multiple abiotic stress management strategies.
Identifiants
pubmed: 34226402
pii: jmb.2105.05009
doi: 10.4014/jmb.2105.05009
pmc: PMC9706007
doi:
Substances chimiques
Metals, Heavy
0
Polysaccharides, Bacterial
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1045-1059Références
Sci Rep. 2020 Oct 12;10(1):16975
pubmed: 33046721
PLoS One. 2019 Sep 12;14(9):e0222302
pubmed: 31513660
Int J Phytoremediation. 2017 Jan 2;19(1):23-38
pubmed: 27484694
Microorganisms. 2021 Apr 07;9(4):
pubmed: 33917219
J Basic Microbiol. 2017 Jul;57(7):548-573
pubmed: 28407275
Bioresour Technol. 2017 Feb;225:113-120
pubmed: 27888727
Int J Genomics. 2014;2014:701596
pubmed: 24804192
Plant Biol (Stuttg). 2016 Nov;18(6):992-1000
pubmed: 27607023
Int J Environ Res Public Health. 2017 Jan 19;14(1):
pubmed: 28106848
Curr Microbiol. 2014 Oct;69(4):484-94
pubmed: 24880775
Plant Pathol J. 2013 Jun;29(2):201-8
pubmed: 25288947
Int J Microbiol. 2020 Oct 29;2020:8897998
pubmed: 33178283
PLoS One. 2013;8(2):e55564
pubmed: 23405172
Indian J Exp Biol. 2015 Feb;53(2):116-23
pubmed: 25757243
Front Microbiol. 2015 May 26;6:496
pubmed: 26074894
BMC Res Notes. 2019 Jan 11;12(1):11
pubmed: 30635071
Water Sci Technol. 2001;43(6):1-8
pubmed: 11381954
Funct Plant Biol. 2012 Dec;39(12):1009-1018
pubmed: 32480850
Front Microbiol. 2015 Apr 10;6:288
pubmed: 25914689
BMC Microbiol. 2018 Oct 24;18(1):156
pubmed: 30355296
Front Plant Sci. 2015 Sep 24;6:774
pubmed: 26442083
Annu Rev Microbiol. 2001;55:165-99
pubmed: 11544353
Front Microbiol. 2017 Sep 06;8:1706
pubmed: 28932218
Plant Biol (Stuttg). 2012 Jul;14(4):605-11
pubmed: 22136617
Microbiol Res. 2005;160(4):367-73
pubmed: 16255141
Front Microbiol. 2018 Jan 11;8:2580
pubmed: 29379471
Microorganisms. 2021 Mar 26;9(4):
pubmed: 33810405
Appl Environ Microbiol. 2017 Jun 16;83(13):
pubmed: 28432096
Sci Rep. 2019 Mar 14;9(1):4547
pubmed: 30872708
Front Plant Sci. 2016 Mar 15;7:303
pubmed: 27014323
Plants (Basel). 2021 Jan 28;10(2):
pubmed: 33525688
Plant Physiol Biochem. 2020 Nov;156:242-256
pubmed: 32979797
Microorganisms. 2020 Jul 09;8(7):
pubmed: 32659895
Indian J Microbiol. 2011 Jul;51(3):294-300
pubmed: 22754006
Mol Plant Microbe Interact. 2012 Apr;25(4):496-504
pubmed: 22409157
Front Plant Sci. 2016 Dec 16;7:1890
pubmed: 28018415
J Environ Manage. 2014 Nov 1;144:1-25
pubmed: 24907407
Ecotoxicol Environ Saf. 2021 Jan 15;208:111769
pubmed: 33396087
Ecotoxicol Environ Saf. 2005 Mar;60(3):324-49
pubmed: 15590011
Microorganisms. 2019 Sep 10;7(9):
pubmed: 31510075
Carbohydr Polym. 2015 Jan 22;115:334-41
pubmed: 25439902
Plant Physiol Biochem. 2020 Jun;151:640-649
pubmed: 32339911
Braz J Microbiol. 2012 Jul;43(3):1183-91
pubmed: 24031943
Plant Pathol J. 2019 Apr;35(2):178-187
pubmed: 31007648
Front Microbiol. 2020 Aug 20;11:1952
pubmed: 32973708
Front Plant Sci. 2015 Nov 12;6:978
pubmed: 26617620
Front Microbiol. 2016 Apr 20;7:525
pubmed: 27148214
Annu Rev Cell Dev Biol. 2005;21:319-46
pubmed: 16212498
Arch Microbiol. 2011 Jul;193(7):497-513
pubmed: 21442319
Front Plant Sci. 2017 Apr 24;8:611
pubmed: 28484479
Appl Environ Microbiol. 1998 Mar;64(3):1024-8
pubmed: 9501442
Biotechnol Rep (Amst). 2017 Nov 08;16:48-57
pubmed: 29167759
Can J Microbiol. 2020 Feb;66(2):144-160
pubmed: 31714812
Ecotoxicol Environ Saf. 2015 Sep;119:186-97
pubmed: 26004359
Sci Rep. 2019 Nov 8;9(1):16282
pubmed: 31704956
Front Plant Sci. 2017 May 19;8:744
pubmed: 28579994
J Environ Biol. 2010 Sep;31(5):701-4
pubmed: 21387925
Water Res. 2002 Jun;36(11):2711-20
pubmed: 12146858
Curr Microbiol. 2009 Jun;58(6):616-21
pubmed: 19340484
Front Plant Sci. 2015 Oct 06;6:820
pubmed: 26500664
Front Plant Sci. 2020 Nov 13;11:591911
pubmed: 33281852
Res Microbiol. 2005 May;156(4):522-31
pubmed: 15862451
Appl Environ Microbiol. 2006 Nov;72(11):7246-52
pubmed: 16980419
Plants (Basel). 2019 Jan 30;8(2):
pubmed: 30704089
Sci Rep. 2019 Feb 14;9(1):2097
pubmed: 30765803
Int J Mol Sci. 2018 Nov 29;19(12):
pubmed: 30501023
Nature. 2016 Jan 7;529(7584):84-7
pubmed: 26738594
Front Microbiol. 2018 Jul 23;9:1636
pubmed: 30083145
Microbiol Res. 2018 May;210:65-73
pubmed: 29625661
Plant Physiol Biochem. 2020 May 3;152:90-99
pubmed: 32408178
BMC Microbiol. 2019 Jul 11;19(1):159
pubmed: 31296165
Plant Biol (Stuttg). 2018 Mar;20(2):271-279
pubmed: 29247572
J Bacteriol. 2019 Mar 13;201(7):
pubmed: 30670545
Appl Environ Microbiol. 2000 Aug;66(8):3393-8
pubmed: 10919797
Front Microbiol. 2019 May 29;10:1207
pubmed: 31191507
Appl Microbiol Biotechnol. 2017 Apr;101(7):2967-2978
pubmed: 28097405
PLoS One. 2014 May 08;9(5):e96086
pubmed: 24811199
BMC Plant Biol. 2018 Sep 20;18(1):205
pubmed: 30236058
Int J Mol Sci. 2020 Feb 20;21(4):
pubmed: 32093336
Physiol Plant. 2021 Jun;172(2):1016-1029
pubmed: 33491182
Molecules. 2016 Apr 29;21(5):
pubmed: 27136521
Funct Plant Biol. 2016 Jul;43(7):632-642
pubmed: 32480492
Mikrobiologiia. 2001 Jul-Aug;70(4):503-8
pubmed: 11558276
Int J Mol Sci. 2021 Mar 19;22(6):
pubmed: 33808829
Front Plant Sci. 2017 Jun 29;8:1147
pubmed: 28706531
World J Microbiol Biotechnol. 2019 May 30;35(6):90
pubmed: 31147784
Microbiol Res. 2017 Nov;204:65-71
pubmed: 28870293
Curr Microbiol. 2020 Nov;77(11):3224-3239
pubmed: 32876713
Int J Mol Sci. 2019 Dec 12;20(24):
pubmed: 31842360
Annu Rev Genet. 1993;27:437-96
pubmed: 8122909
Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7687-92
pubmed: 9636211
Front Microbiol. 2020 Sep 29;11:553621
pubmed: 33117303