Integrative biology defines novel biomarkers of resistance to strongylid infection in horses.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
12 07 2021
Historique:
received: 26 04 2021
accepted: 16 06 2021
entrez: 13 7 2021
pubmed: 14 7 2021
medline: 15 12 2021
Statut: epublish

Résumé

The widespread failure of anthelmintic drugs against nematodes of veterinary interest requires novel control strategies. Selective treatment of the most susceptible individuals could reduce drug selection pressure but requires appropriate biomarkers of the intrinsic susceptibility potential. To date, this has been missing in livestock species. Here, we selected Welsh ponies with divergent intrinsic susceptibility (measured by their egg excretion levels) to cyathostomin infection and found that their divergence was sustained across a 10-year time window. Using this unique set of individuals, we monitored variations in their blood cell populations, plasma metabolites and faecal microbiota over a grazing season to isolate core differences between their respective responses under worm-free or natural infection conditions. Our analyses identified the concomitant rise in plasma phenylalanine level and faecal Prevotella abundance and the reduction in circulating monocyte counts as biomarkers of the need for drug treatment (egg excretion above 200 eggs/g). This biological signal was replicated in other independent populations. We also unravelled an immunometabolic network encompassing plasma beta-hydroxybutyrate level, short-chain fatty acid producing bacteria and circulating neutrophils that forms the discriminant baseline between susceptible and resistant individuals. Altogether our observations open new perspectives on the susceptibility of equids to strongylid infection and leave scope for both new biomarkers of infection and nutritional intervention.

Identifiants

pubmed: 34253752
doi: 10.1038/s41598-021-93468-2
pii: 10.1038/s41598-021-93468-2
pmc: PMC8275762
doi:

Substances chimiques

Anthelmintics 0
Biomarkers 0
Phenylalanine 47E5O17Y3R
3-Hydroxybutyric Acid TZP1275679

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

14278

Informations de copyright

© 2021. The Author(s).

Références

G. B. D. DALYs & Hale Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1260–1344 (2017).
doi: 10.1016/S0140-6736(17)32130-X
Nieuwhof, G. J. & Bishop, S. C. Costs of the major endemic diseases of sheep in Great Britain and the potential benefits of reduction in disease impact. Anim. Sci. 81, 23–29 (2005).
doi: 10.1079/ASC41010023
Kaplan, R. M. & Vidyashankar, A. N. An inconvenient truth: Global worming and anthelmintic resistance. Vet. Parasitol. 186, 70–78 (2012).
pubmed: 22154968 doi: 10.1016/j.vetpar.2011.11.048
Lyons, E. Population-S benzimidazole- and tetrahydropyrimidine-resistant small strongyles in a pony herd in Kentucky (1977–1999): Effects of anthelmintic treatment on the parasites as determined in critical tests. Parasitol. Res. 91, 407–411 (2003).
pubmed: 14530968 doi: 10.1007/s00436-003-0983-6
Näreaho, A., Vainio, K. & Oksanen, A. Impaired efficacy of ivermectin against Parascaris equorum, and both ivermectin and pyrantel against strongyle infections in trotter foals in Finland. Vet. Parasitol. 182, 372–377 (2011).
pubmed: 21689886 doi: 10.1016/j.vetpar.2011.05.045
Nielsen, M. K. et al. Anthelmintic efficacy against equine strongyles in the United States. Vet. Parasitol. 259, 53–60 (2018).
pubmed: 30056984 doi: 10.1016/j.vetpar.2018.07.003
Sallé, G. et al. Risk factor analysis of equine strongyle resistance to anthelmintics. Int. J. Parasitol. Drugs Drug Resist. 7, 407–415 (2017).
pubmed: 29149701 pmcid: 5727347 doi: 10.1016/j.ijpddr.2017.10.007
Tzelos, T. et al. Strongyle egg reappearance period after moxidectin treatment and its relationship with management factors in UK equine populations. Vet. Parasitol. 237, 70–76 (2017).
pubmed: 28249767 doi: 10.1016/j.vetpar.2017.02.018
Peregrine, A. S., Molento, M. B., Kaplan, R. M. & Nielsen, M. K. Anthelmintic resistance in important parasites of horses: Does it really matter?. Vet. Parasitol. 201, 1–8 (2014).
pubmed: 24485565 doi: 10.1016/j.vetpar.2014.01.004
Debeffe, L. et al. Negative covariance between parasite load and body condition in a population of feral horses. Parasitology 143, 983–997 (2016).
pubmed: 27046508 doi: 10.1017/S0031182016000408
Rubenstein, D. I. & Hohmann, M. E. Parasites and social behavior of island feral horses. Oikos 55, 312 (1989).
doi: 10.2307/3565589
Nielsen, M. K., Martin, A. N., Scare, J. A. & Steuer, A. E. Precision and spatial variation of cyathostomin mucosal larval counts. Vet. Parasitol. 290, 109349 (2021).
pubmed: 33482426 doi: 10.1016/j.vetpar.2021.109349
Gibson, T. E. The effect of repeated anthelmintic treatment with phenothiazine on the faecal egg counts of housed horses, with some observations on the life cycle of Trichonema spp. in the horse. J. Helminthol. 27, 29–40 (1953).
doi: 10.1017/S0022149X00023488
Giles, C. J., Urquhart, K. A. & Longstaffe, J. A. Larval cyathostomiasis (immature trichonema-induced enteropathy): A report of 15 clinical cases. Equine Vet. J. 17, 196–201 (1985).
pubmed: 4076127 doi: 10.1111/j.2042-3306.1985.tb02469.x
Sallé, G. et al. Compilation of 29 years of postmortem examinations identifies major shifts in equine parasite prevalence from 2000 onwards. Int. J. Parasitol. https://doi.org/10.1016/j.ijpara.2019.11.004 (2020).
doi: 10.1016/j.ijpara.2019.11.004 pubmed: 31981673
Kornaś, S. et al. Estimation of genetic parameters for resistance to gastro-intestinal nematodes in pure blood Arabian horses. Int. J. Parasitol. 45, 237–242 (2015).
pubmed: 25592965 doi: 10.1016/j.ijpara.2014.11.003
Scheuerle, M. C., Stear, M. J., Honeder, A., Becher, A. M. & Pfister, K. Repeatability of strongyle egg counts in naturally infected horses. Vet. Parasitol. 228, 103–107 (2016).
pubmed: 27692309 doi: 10.1016/j.vetpar.2016.08.021
Gold, S. et al. Quantitative genetics of gastrointestinal strongyle burden and associated body condition in feral horses. Int. J. Parasitol. Parasites Wildl. 9, 104–111 (2019).
pubmed: 31011533 pmcid: 6462499 doi: 10.1016/j.ijppaw.2019.03.010
Stear, M. J., Park, M. & Bishop, S. C. The key components of resistance to Ostertagia circumcincta in lambs. Parasitol. Today Pers. Ed. 12, 438–441 (1996).
doi: 10.1016/0169-4758(96)10069-7
Nielsen, M. K., Baptiste, K. E., Tolliver, S. C., Collins, S. S. & Lyons, E. T. Analysis of multiyear studies in horses in Kentucky to ascertain whether counts of eggs and larvae per gram of feces are reliable indicators of numbers of strongyles and ascarids present. Vet. Parasitol. 174, 77–84 (2010).
pubmed: 20850927 doi: 10.1016/j.vetpar.2010.08.007
Bishop, S. C. & Stear, M. J. Modeling of host genetics and resistance to infectious diseases: Understanding and controlling nematode infections. Vet. Parasitol. 115, 147–166 (2003).
pubmed: 12878420 doi: 10.1016/S0304-4017(03)00204-8
Råberg, L., Graham, A. L. & Read, A. F. Decomposing health: Tolerance and resistance to parasites in animals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 37–49 (2009).
pubmed: 18926971 doi: 10.1098/rstb.2008.0184
Sallé, G. et al. A genome scan for QTL affecting resistance to Haemonchus contortus in sheep. J. Anim. Sci. 90, 4690–4705 (2012).
pubmed: 22767094 doi: 10.2527/jas.2012-5121
Kemper, K. E. et al. The distribution of SNP marker effects for faecal worm egg count in sheep, and the feasibility of using these markers to predict genetic merit for resistance to worm infections. Genet. Res. Camb. 93, 203–219 (2011).
pubmed: 24725775 doi: 10.1017/S0016672311000097
McRae, K. M., McEwan, J. C., Dodds, K. G. & Gemmell, N. J. Signatures of selection in sheep bred for resistance or susceptibility to gastrointestinal nematodes. BMC Genom. 15, 637 (2014).
doi: 10.1186/1471-2164-15-637
Sallé, G. et al. Functional investigation of a QTL affecting resistance to Haemonchus contortus in sheep. Vet. Res. 45, 68 (2014).
pubmed: 24939584 pmcid: 4077151 doi: 10.1186/1297-9716-45-68
Terefe, G. et al. Immune response to Haemonchus contortus infection in susceptible (INRA 401) and resistant (Barbados Black Belly) breeds of lambs. Parasite Immunol. 29, 415–424 (2007).
pubmed: 17650183 doi: 10.1111/j.1365-3024.2007.00958.x
Slusarewicz, P. et al. Automated parasite faecal egg counting using fluorescence labelling, smartphone image capture and computational image analysis. Int. J. Parasitol. 46, 485–493 (2016).
pubmed: 27025771 doi: 10.1016/j.ijpara.2016.02.004
Relf, V. E., Morgan, E. R., Hodgkinson, J. E. & Matthews, J. B. A questionnaire study on parasite control practices on UK breeding Thoroughbred studs. Equine Vet. J. 44, 466–471 (2012).
pubmed: 22050130 doi: 10.1111/j.2042-3306.2011.00493.x
Lester, H. E. et al. A cost comparison of faecal egg count-directed anthelmintic delivery versus interval programme treatments in horses. Vet. Rec. 173, 371 (2013).
pubmed: 24068698 doi: 10.1136/vr.101804
Sallé, G., Cortet, J., Koch, C., Reigner, F. & Cabaret, J. Economic assessment of FEC-based targeted selective drenching in horses. Vet. Parasitol. 214, 159–166 (2015).
pubmed: 26414907 doi: 10.1016/j.vetpar.2015.09.006
Murphy, D. & Love, S. The pathogenic effects of experimental cyathostome infections in ponies. Vet. Parasitol. 70, 99–110 (1997).
pubmed: 9195714 doi: 10.1016/S0304-4017(96)01153-3
Andersen, U. V. et al. Physiologic and systemic acute phase inflammatory responses in young horses repeatedly infected with cyathostomins and Strongylus vulgaris. Vet. Parasitol. 201, 67–74 (2014).
pubmed: 24529577 doi: 10.1016/j.vetpar.2014.01.011
Clark, A. et al. Strongyle infection and gut microbiota: Profiling of resistant and susceptible horses over a grazing season. Front. Physiol. 9, 272 (2018).
pubmed: 29618989 pmcid: 5871743 doi: 10.3389/fphys.2018.00272
Peachey, L. E. et al. Dysbiosis associated with acute helminth infections in herbivorous youngstock—Observations and implications. Sci. Rep. 9, 1–16 (2019).
doi: 10.1038/s41598-019-47204-6
Walshe, N. et al. Removal of adult cyathostomins alters faecal microbiota and promotes an inflammatory phenotype in horses. Int. J. Parasitol. 49, 489–500 (2019).
pubmed: 30986403 doi: 10.1016/j.ijpara.2019.02.003
Daniels, S. P., Leng, J., Swann, J. R. & Proudman, C. J. Bugs and drugs: A systems biology approach to characterising the effect of moxidectin on the horse’s faecal microbiome. Anim. Microbiome 2, 38 (2020).
pubmed: 33499996 pmcid: 7807906 doi: 10.1186/s42523-020-00056-2
Wang, Y. et al. Systems metabolic effects of a necator americanus infection in Syrian hamster. J. Proteome Res. 8, 5442–5450 (2009).
pubmed: 19810771 doi: 10.1021/pr900711j
Wu, J.-F. et al. Metabolic alterations in the hamster co-infected with Schistosoma japonicum and Necator americanus. Int. J. Parasitol. 40, 695–703 (2010).
pubmed: 19951707 doi: 10.1016/j.ijpara.2009.11.003
Globisch, D. et al. Onchocerca volvulus—Neurotransmitter tyramine is a biomarker for river blindness. Proc. Natl. Acad. Sci. 110, 4218–4223 (2013).
pubmed: 23440222 pmcid: 3600455 doi: 10.1073/pnas.1221969110
Lagatie, O. et al. Evaluation of the diagnostic potential of urinary N-acetyltyramine-O, β-glucuronide (NATOG) as diagnostic biomarker for Onchocerca volvulus infection. Parasit. Vectors 9, 302 (2016).
pubmed: 27216752 pmcid: 4877973 doi: 10.1186/s13071-016-1582-6
The EPIC Consortium et al. Dynamic molecular changes during the first week of human life follow a robust developmental trajectory. Nat. Commun. 10, 1–14 (2019).
Klassen, P., Fürst, P., Schulz, C., Mazariegos, M. & Solomons, N. W. Plasma free amino acid concentrations in healthy Guatemalan adults and in patients with classic dengue. Am. J. Clin. Nutr. 73, 647–652 (2001).
pubmed: 11237944 doi: 10.1093/ajcn/73.3.647
Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).
pubmed: 24629344 pmcid: 4059512 doi: 10.1016/j.chom.2014.02.005
Xiao, L., Herd, R. P. & Majewski, G. A. Comparative efficacy of moxidectin and ivermectin against hypobiotic and encysted cyathostomes and other equine parasites. Vet. Parasitol. 53, 83–90 (1994).
pubmed: 8091622 doi: 10.1016/0304-4017(94)90020-5
Wannemacher, R. W. Key role of various individual amino acids in host response to infection. Am. J. Clin. Nutr. 30, 1269–1280 (1977).
pubmed: 407785 doi: 10.1093/ajcn/30.8.1269
Peters, A. et al. Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLoS Genet. 15, e1008145 (2019).
pubmed: 31120900 pmcid: 6532841 doi: 10.1371/journal.pgen.1008145
Husted, A. S., Trauelsen, M., Rudenko, O., Hjorth, S. A. & Schwartz, T. W. GPCR-mediated signaling of metabolites. Cell Metab. 25, 777–796 (2017).
pubmed: 28380372 doi: 10.1016/j.cmet.2017.03.008
Iljazovic, A. et al. Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol. 14, 113–124 (2021).
pubmed: 32433514 doi: 10.1038/s41385-020-0296-4
Villarino, N. F. et al. Composition of the gut microbiota modulates the severity of malaria. Proc. Natl. Acad. Sci. 113, 2235–2240 (2016).
pubmed: 26858424 pmcid: 4776451 doi: 10.1073/pnas.1504887113
Ajibola, O. et al. Urogenital schistosomiasis is associated with signatures of microbiome dysbiosis in Nigerian adolescents. Sci. Rep. 9, 829 (2019).
pubmed: 30696838 pmcid: 6351658 doi: 10.1038/s41598-018-36709-1
Stolzenbach, S. et al. Dietary inulin and Trichuris suis infection promote beneficial bacteria throughout the porcine gut. Front. Microbiol. 11, 312 (2020).
pubmed: 32194529 pmcid: 7064446 doi: 10.3389/fmicb.2020.00312
Helmby, H., Takeda, K., Akira, S. & Grencis, R. K. Interleukin (IL)-18 promotes the development of chronic gastrointestinal helminth infection by downregulating IL-13. J. Exp. Med. 194, 355–364 (2001).
pubmed: 11489954 pmcid: 2193471 doi: 10.1084/jem.194.3.355
Reynolds, L. A. et al. MyD88 signaling inhibits protective immunity to the gastrointestinal helminth parasite Heligmosomoides polygyrus. J. Immunol. 193, 2984–2993 (2014).
pubmed: 25114104 pmcid: 4157852 doi: 10.4049/jimmunol.1401056
Kelly, B. & Pearce, E. L. Amino assets: How amino acids support immunity. Cell Metab. 32, 154–175 (2020).
pubmed: 32649859 doi: 10.1016/j.cmet.2020.06.010
Wellendorph, P. et al. Deorphanization of GPRC6A: A promiscuous l-α-amino acid receptor with preference for basic amino acids. Mol. Pharmacol. 67, 589–597 (2005).
pubmed: 15576628 doi: 10.1124/mol.104.007559
Quandt, D., Rothe, K., Baerwald, C. & Rossol, M. GPRC6A mediates alum-induced Nlrp3 inflammasome activation but limits Th2 type antibody responses. Sci. Rep. 5, 16719 (2015).
pubmed: 26602597 pmcid: 4658484 doi: 10.1038/srep16719
Youm, Y.-H. et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015).
pubmed: 25686106 pmcid: 4352123 doi: 10.1038/nm.3804
Goldberg, E. L. et al. β-Hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares. Cell Rep. 18, 2077–2087 (2017).
pubmed: 28249154 pmcid: 5527297 doi: 10.1016/j.celrep.2017.02.004
Sina, C. et al. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J. Immunol. 183, 7514–7522 (2009).
pubmed: 19917676 doi: 10.4049/jimmunol.0900063
Wu, S. et al. Worm burden-dependent disruption of the porcine colon microbiota by Trichuris suis infection. PLoS ONE 7, e35470 (2012).
pubmed: 22532855 pmcid: 3332011 doi: 10.1371/journal.pone.0035470
Jiao, J. et al. Shifts in host mucosal innate immune function are associated with ruminal microbial succession in supplemental feeding and grazing goats at different ages. Front. Microbiol. 8, 1655 (2017).
pubmed: 28912767 pmcid: 5582421 doi: 10.3389/fmicb.2017.01655
Heeb, L. E. M., Egholm, C., Impellizzieri, D., Ridder, F. & Boyman, O. Regulation of neutrophils in type 2 immune responses. Curr. Opin. Immunol. 54, 115–122 (2018).
pubmed: 30015087 doi: 10.1016/j.coi.2018.06.009
Allen, J. E., Sutherland, T. E. & Rückerl, D. IL-17 and neutrophils: Unexpected players in the type 2 immune response. Curr. Opin. Immunol. 34, 99–106 (2015).
pubmed: 25794823 doi: 10.1016/j.coi.2015.03.001
Sorobetea, D., Svensson-Frej, M. & Grencis, R. Immunity to gastrointestinal nematode infections. Mucosal Immunol. 11, 304–315 (2018).
pubmed: 29297502 doi: 10.1038/mi.2017.113
Michels, C. E. et al. Neither interleukin-4 receptor α expression on CD4
pubmed: 19191917 pmcid: 2753907 doi: 10.1111/j.1365-2567.2008.02987.x
Al-Qaoud, K. M. et al. A new mechanism for IL-5-dependent helminth control: Neutrophil accumulation and neutrophil-mediated worm encapsulation in murine filariasis are abolished in the absence of IL-5. Int. Immunol. 12, 899–908 (2000).
pubmed: 10837417 doi: 10.1093/intimm/12.6.899
Bonne-Année, S. et al. Human and mouse macrophages collaborate with neutrophils to kill larval Strongyloides stercoralis. Infect. Immun. 81, 3346–3355 (2013).
pubmed: 23798541 pmcid: 3754234 doi: 10.1128/IAI.00625-13
Anthony, R. M. et al. Memory TH2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nat. Med. 12, 955–960 (2006).
pubmed: 16892038 pmcid: 1955764 doi: 10.1038/nm1451
Lavoie-Lamoureux, A. et al. IL-4 activates equine neutrophils and induces a mixed inflammatory cytokine expression profile with enhanced neutrophil chemotactic mediator release ex vivo. Am. J. Physiol. Lung Cell. Mol. Physiol. 299, L472–L482 (2010).
pubmed: 20639353 doi: 10.1152/ajplung.00135.2009
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).
Boersema, J. H., Eysker, M. & van der Aar, W. M. The reappearance of strongyle eggs in the faeces of horses after treatment with moxidectin. Vet. Q. 20, 15–17 (1998).
pubmed: 9477529 doi: 10.1080/01652176.1998.9694828
Raynaud, J. P. Study of the efficiency of a quantitative coproscopic technic for the routine diagnosis and control of parasitic infestations of cattle, sheep, horses and swine. Ann. Parasitol. Hum. Comp. 45, 321–342 (1970).
pubmed: 5531507 doi: 10.1051/parasite/1970453321
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
pubmed: 31341288 pmcid: 7015180 doi: 10.1038/s41587-019-0209-9
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.J. 17, 10 (2011).
doi: 10.14806/ej.17.1.200
Callahan, B. J. et al. DADA2: High-resolution sample inference from illumina amplicon data. Nat. Methods 13, 581–583 (2016).
pubmed: 27214047 pmcid: 4927377 doi: 10.1038/nmeth.3869
Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).
pubmed: 28731476 pmcid: 5702726 doi: 10.1038/ismej.2017.119
Jansen, J. J., Hoefsloot, H. C. J., van der Greef, J., Timmerman, M. E. & Smilde, A. K. Multilevel component analysis of time-resolved metabolic fingerprinting data. Anal. Chim. Acta 530, 173–183 (2005).
doi: 10.1016/j.aca.2004.09.074
Smilde, A. K. et al. ANOVA-simultaneous component analysis (ASCA): A new tool for analyzing designed metabolomics data. Bioinform. Oxf. Engl. 21, 3043–3048 (2005).
doi: 10.1093/bioinformatics/bti476
Chong, J. et al. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucl. Acids Res. 46, W486–W494 (2018).
pubmed: 29762782 pmcid: 6030889 doi: 10.1093/nar/gky310
Rohart, F., Gautier, B., Singh, A. & Lê Cao, K.-A. mixOmics: An R package for ’omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017).
pubmed: 29099853 pmcid: 5687754 doi: 10.1371/journal.pcbi.1005752
Singh, A. et al. DIABLO: An integrative approach for identifying key molecular drivers from multi-omics assays. Bioinform. Oxf. Engl. 35, 3055–3062 (2019).
doi: 10.1093/bioinformatics/bty1054
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucl. Acids Res. 28, 27–30 (2000).
pubmed: 10592173 pmcid: 102409 doi: 10.1093/nar/28.1.27

Auteurs

Guillaume Sallé (G)

INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, 37380, Nouzilly, France. Guillaume.Salle@inrae.fr.

Cécile Canlet (C)

INRAE, Université de Toulouse, ENVT, INP-Purpan, UPS, UMR 1331 Toxalim, 31027, Toulouse, France.

Jacques Cortet (J)

INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, 37380, Nouzilly, France.

Christine Koch (C)

INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, 37380, Nouzilly, France.

Joshua Malsa (J)

INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, 37380, Nouzilly, France.

Fabrice Reigner (F)

INRAE, UE 1297 Physiologie Animale de l'Orfrasière, 37380, Nouzilly, France.

Mickaël Riou (M)

INRAE, UE 1277 Plateforme d'Infectiologie Expérimentale, 37380, Nouzilly, France.

Noémie Perrot (N)

INRAE, UE 1277 Plateforme d'Infectiologie Expérimentale, 37380, Nouzilly, France.

Alexandra Blanchard (A)

Pancosma, Rolle, Switzerland.

Núria Mach (N)

INRAE, Université Paris-Saclay, AgroParisTech, Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
C-Reactive Protein Humans Biomarkers Inflammation
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH