Root engineering in maize by increasing cytokinin degradation causes enhanced root growth and leaf mineral enrichment.
Arabidopsis
/ genetics
Arabidopsis Proteins
/ genetics
Copper
/ metabolism
Cytokinins
/ metabolism
Gene Expression Regulation, Plant
Genetic Engineering
/ methods
Manganese
/ metabolism
Membrane Proteins
/ genetics
Minerals
/ metabolism
Oxidoreductases Acting on CH-NH Group Donors
/ genetics
Plant Leaves
/ genetics
Plant Roots
/ genetics
Plant Shoots
/ genetics
Plants, Genetically Modified
Reverse Transcriptase Polymerase Chain Reaction
Transgenes
/ genetics
Zea mays
/ genetics
Zinc
/ metabolism
Cytokinin
Cytokinin oxidase/dehydrogenase
Maize
Mineral nutrition
Root system
Zea mays
Journal
Plant molecular biology
ISSN: 1573-5028
Titre abrégé: Plant Mol Biol
Pays: Netherlands
ID NLM: 9106343
Informations de publication
Date de publication:
Aug 2021
Aug 2021
Historique:
received:
25
05
2021
accepted:
01
07
2021
pubmed:
19
7
2021
medline:
17
8
2021
entrez:
18
7
2021
Statut:
ppublish
Résumé
Root-specific expression of a cytokinin-degrading CKX gene in maize roots causes formation of a larger root system leading to higher element content in shoot organs. The size and architecture of the root system is functionally relevant for the access to water and soil nutrients. A great number of mostly unknown genes are involved in regulating root architecture complicating targeted breeding of plants with a larger root system. Here, we have explored whether root-specific degradation of the hormone cytokinin, which is a negative regulator of root growth, can be used to genetically engineer maize (Zea mays L.) plants with a larger root system. Root-specific expression of a CYTOKININ OXIDASE/DEHYDROGENASE (CKX) gene of Arabidopsis caused the formation of up to 46% more root dry weight while shoot growth of these transgenic lines was similar as in non-transgenic control plants. The concentration of several elements, in particular of those with low soil mobility (K, P, Mo, Zn), was increased in leaves of transgenic lines. In kernels, the changes in concentration of most elements were less pronounced, but the concentrations of Cu, Mn and Zn were significantly increased in at least one of the three independent lines. Our data illustrate the potential of an increased root system as part of efforts towards achieving biofortification. Taken together, this work has shown that root-specific expression of a CKX gene can be used to engineer the root system of maize and alter shoot element composition.
Identifiants
pubmed: 34275101
doi: 10.1007/s11103-021-01173-5
pii: 10.1007/s11103-021-01173-5
pmc: PMC8338857
doi:
Substances chimiques
Arabidopsis Proteins
0
Cytokinins
0
Membrane Proteins
0
Minerals
0
Manganese
42Z2K6ZL8P
Copper
789U1901C5
CKX1 protein, Arabidopsis
EC 1.5.-
Oxidoreductases Acting on CH-NH Group Donors
EC 1.5.-
Zinc
J41CSQ7QDS
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
555-567Informations de copyright
© 2021. The Author(s).
Références
Plant Physiol. 2014 May 7;165(3):1035-1046
pubmed: 24808099
Plant Physiol. 2018 Jul;177(3):1078-1095
pubmed: 29871980
Ann Bot. 2005 Oct;96(5):745-54
pubmed: 16033776
Breed Sci. 2015 Sep;65(4):298-307
pubmed: 26366112
Plant Mol Biol. 2003 May;52(2):331-41
pubmed: 12856940
Adv Nutr. 2013 Mar 01;4(2):176-90
pubmed: 23493534
New Phytol. 2009;182(1):49-84
pubmed: 19192191
Plant Physiol. 2018 Mar;176(3):2024-2039
pubmed: 29301955
Plant Mol Biol. 1995 Jan;27(2):237-48
pubmed: 7888615
Plant Physiol. 2011 Jul;156(3):1041-9
pubmed: 21610180
J Exp Bot. 2012 Jun;63(11):4263-73
pubmed: 22523343
Plant Physiol. 2010 May;153(1):185-97
pubmed: 20335401
Plant Biotechnol J. 2018 Jan;16(1):63-71
pubmed: 28436146
PLoS One. 2012;7(10):e47797
pubmed: 23112848
J Integr Plant Biol. 2014 Mar;56(3):231-49
pubmed: 24393374
Trends Plant Sci. 2018 Jan;23(1):79-88
pubmed: 29170008
Environ Pollut. 2020 Nov;266(Pt 2):115114
pubmed: 32634695
Plants (Basel). 2019 Sep 27;8(10):
pubmed: 31569811
Plant J. 2011 May;66(4):553-63
pubmed: 21299659
Ann Bot. 2013 Jul;112(2):347-57
pubmed: 23328767
J Exp Bot. 2016 Aug;67(15):4431-3
pubmed: 27493225
Development. 2019 Jul 10;146(13):
pubmed: 31160418
BMC Plant Biol. 2019 Feb 20;19(1):83
pubmed: 30786853
Ann Bot. 2013 Jul;112(2):207-22
pubmed: 23821619
J Exp Bot. 2015 Aug;66(15):4759-68
pubmed: 26019251
Ann Bot. 2011 Sep;108(3):407-18
pubmed: 21813565
Plant Cell. 2010 Dec;22(12):3905-20
pubmed: 21148816
Plant Physiol. 2005 Jun;138(2):847-57
pubmed: 15923327
New Phytol. 2019 Oct;224(1):202-215
pubmed: 31131881
Nature. 2018 Mar 22;555(7697):529-533
pubmed: 29539635
Plant Mol Biol. 2014 Nov;86(4-5):543-54
pubmed: 25209110
Curr Opin Biotechnol. 2015 Apr;32:93-98
pubmed: 25448235
Front Plant Sci. 2013 Nov 05;4:442
pubmed: 24204374
Plant Biotechnol J. 2020 Nov;18(11):2225-2240
pubmed: 32181964
Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10487-92
pubmed: 11504909
Environ Geochem Health. 2020 Sep;42(9):3015-3033
pubmed: 31902042
BMC Plant Biol. 2019 Dec 26;19(1):584
pubmed: 31878892
Plant Physiol. 2014 Mar;164(3):1470-83
pubmed: 24424319
J Plant Res. 2003 Jun;116(3):241-52
pubmed: 12721786
Philos Trans R Soc Lond B Biol Sci. 2012 Jun 5;367(1595):1598-604
pubmed: 22527403
Plant Cell Physiol. 2018 Oct 1;59(10):1919-1930
pubmed: 30020530
Front Plant Sci. 2013 Sep 12;4:355
pubmed: 24062755
J Exp Bot. 2013 Nov;64(16):5021-32
pubmed: 24023250
Plant Signal Behav. 2018;13(11):e1530023
pubmed: 30296206
Curr Opin Plant Biol. 2009 Apr;12(2):172-7
pubmed: 19157956
Plant Physiol Biochem. 2015 Nov;96:38-44
pubmed: 26226599
Plant Mol Biol. 1999 Nov;41(4):563-73
pubmed: 10608665
J Exp Bot. 2016 Aug;67(15):4545-57
pubmed: 27401910
Plant Physiol. 2011 Mar;155(3):1339-52
pubmed: 21205622
Plant Cell. 2008 Aug;20(8):2102-16
pubmed: 18723577
Planta. 2003 Feb;216(4):648-55
pubmed: 12569407
New Phytol. 1985 Nov;101(3):387-391
pubmed: 33874241
Front Plant Sci. 2016 Aug 31;7:1335
pubmed: 27630659
Plant Cell Environ. 2020 Apr;43(4):880-902
pubmed: 31733168
Plant Cell. 2003 Nov;15(11):2532-50
pubmed: 14555694
Plant Physiol. 2020 Jul;183(3):1011-1025
pubmed: 32332090