Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore.
Journal
Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
received:
10
07
2020
accepted:
10
05
2021
pubmed:
21
7
2021
medline:
7
4
2022
entrez:
20
7
2021
Statut:
ppublish
Résumé
RNA modifications, such as N
Identifiants
pubmed: 34282325
doi: 10.1038/s41587-021-00949-w
pii: 10.1038/s41587-021-00949-w
doi:
Substances chimiques
RNA
63231-63-0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1394-1402Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).
doi: 10.1016/j.molcel.2012.10.015
Wang, Y. et al. N
doi: 10.1038/ncb2902
Zhao, X. et al. FTO-dependent demethylation of N
doi: 10.1038/cr.2014.151
Geula, S. et al. Stem cells. m
doi: 10.1126/science.1261417
Chen, T. et al. m
doi: 10.1016/j.stem.2015.02.011
Xu, K. et al. Mettl3-mediated m
doi: 10.1038/cr.2017.100
Mathiyalagan, P. et al. FTO-dependent N
doi: 10.1161/CIRCULATIONAHA.118.033794
Li, Z. et al. FTO plays an oncogenic role in acute myeloid leukemia as a N
doi: 10.1016/j.ccell.2016.11.017
Su, R. et al. R-2HG exhibits anti-tumor activity by targeting FTO/mA/MYC/CEBPA signaling. Cell 172, 90–105 (2018).
doi: 10.1016/j.cell.2017.11.031
Deng, X. et al. RNA N
doi: 10.1038/s41422-018-0034-6
Wang, X. et al. N
doi: 10.1038/nature12730
Meyer, K. D. et al. 5′ UTR m
doi: 10.1016/j.cell.2015.10.012
Alarcón, C. R., Lee, H., Goodarzi, H., Halberg, N. & Tavazoie, S. F. N
doi: 10.1038/nature14281
Alarcón, C. R. et al. HNRNPA2B1 is a mediator of m
doi: 10.1016/j.cell.2015.08.011
Koh, C. W. Q., Goh, Y. T. & Goh, W. S. S. Atlas of quantitative single-base-resolution N
Zaccara, S. & Jaffrey, S. R. A unified model for the function of YTHDF proteins in regulating m
doi: 10.1016/j.cell.2020.05.012
Goh, Y. T., Koh, C. W. Q., Sim, D. Y., Roca, X. & Goh, W. S. S. METTL4 catalyzes m
Yankova, E. et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593, 597–601 (2021).
doi: 10.1038/s41586-021-03536-w
Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).
doi: 10.1038/s41580-019-0168-5
Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).
doi: 10.1038/nmeth.3453
Meyer, K. D. DART-seq: an antibody-free method for global m6A detection. Nat. Methods 16, 1275–1280 (2019).
doi: 10.1038/s41592-019-0570-0
Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018).
doi: 10.1038/nmeth.4577
Stoiber, M. et al. De novo identification of DNA modifications enabled by genome-guided nanopore signal processing. Preprint at bioRxiv https://doi.org/10.1101/094672 (2017).
Leger, A. et al. RNA modifications detection by comparative Nanopore direct RNA sequencing. Preprint at bioRxiv https://doi.org/10.1101/843136 (2019).
Parker, M. T. et al. Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m
Liu, H. et al. Accurate detection of m
doi: 10.1038/s41467-019-11713-9
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
doi: 10.1093/bioinformatics/bty191
Loman, N. J., Quick, J. & Simpson, J. T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods 12, 733–735 (2015).
doi: 10.1038/nmeth.3444
Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).
doi: 10.1038/nmeth.4184
Corduneanu, A. & Bishop, C. M. Variational Bayesian model selection for mixture distributions. in Proceedings of the Eighth International Conference on Artificial Intelligence and Statistics 27–34 (Morgan Kaufmann, 2001).
Lorenz, D. A., Sathe, S., Einstein, J. M. & Yeo, G. W. Direct RNA sequencing enables m
doi: 10.1261/rna.072785.119
Liu, N. et al. Probing N
doi: 10.1261/rna.041178.113
Chen, Y. et al. A systematic benchmark of Nanopore long read RNA sequencing for transcript level analysis in human cell lines. Preprint at bioRxiv https://doi.org/10.1101/2021.04.21.440736 (2021).
McIntyre, A. B. R. et al. Limits in the detection of m
doi: 10.1038/s41598-020-63355-3
Dominissini, D. et al. Topology of the human and mouse m
doi: 10.1038/nature11112
Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).
doi: 10.1016/j.cell.2012.05.003
Ke, S. et al. A majority of m
doi: 10.1101/gad.269415.115
Garcia-Campos, M. A. et al. Deciphering the ‘m
doi: 10.1016/j.cell.2019.06.013
Shu, X. et al. A metabolic labeling method detects m
Ueda, H. nanoDoc: RNA modification detection using Nanopore raw reads with Deep One-Class Classification. Preprint at bioRxiv https://doi.org/10.1101/2020.09.13.295089 (2020).
Ding, H., Bailey, A. D., Jain, M., Olsen, H. & Paten, B. Gaussian mixture model-based unsupervised nucleotide modification number detection using nanopore-sequencing readouts. Bioinformatics 36, 4928–4934 (2020).
doi: 10.1093/bioinformatics/btaa601
Price, A. M. et al. Direct RNA sequencing reveals m
doi: 10.1038/s41467-020-19787-6
Kim, D. et al. The architecture of SARS-CoV-2 transcriptome. Cell 181, 914–921 (2020).
Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297–1305 (2019).
doi: 10.1038/s41592-019-0617-2
Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).
doi: 10.1101/gr.129684.111
Grozhik, A. V., Linder, B., Olarerin-George, A. O. & Jaffrey, S. R. Mapping m