Meet your MAKR: the membrane-associated kinase regulator protein family in the regulation of plant development.
Arabidopsis
/ genetics
Arabidopsis Proteins
/ metabolism
Brassinosteroids
Gene Expression Regulation, Plant
Hormones
/ metabolism
Intrinsically Disordered Proteins
/ metabolism
Membrane Proteins
/ genetics
Plant Development
/ genetics
Plants
/ genetics
Protein Kinases
/ metabolism
Signal Transduction
/ genetics
auxin
brassinosteroids
lateral root
receptor-like kinase
vascular development
Journal
The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
revised:
03
06
2021
received:
26
04
2021
accepted:
19
07
2021
pubmed:
22
7
2021
medline:
20
10
2022
entrez:
21
7
2021
Statut:
ppublish
Résumé
A small family composed of BRI1 KINASE INHIBITOR1 (BKI1) and MEMBRANE-ASSOCIATED KINASE REGULATORS (MAKRs) has recently captured the attention of plant biologists, due to their involvement in developmental processes downstream of hormones and Receptor-Like Kinases (RLK) signalling. BKI1/MAKRs are intrinsically disordered proteins (so-called unstructured proteins) and as such lack specific domains. Instead, they are defined by the presence of two conserved linear motifs involved in the interaction with lipids and proteins, respectively. Here, we first relate the discovery of the MAKR gene family. Then, we review the individual function of characterized family members and discuss their shared and specific modes of action. Finally, we explore and summarize the structural, comparative and functional genomics data available on this gene family. Together, this review aims at building a comprehensive reference about BKI1/MAKR protein function in plants.
Substances chimiques
Arabidopsis Proteins
0
Brassinosteroids
0
Hormones
0
Intrinsically Disordered Proteins
0
Membrane Proteins
0
Protein Kinases
EC 2.7.-
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6172-6186Informations de copyright
© 2021 Federation of European Biochemical Societies.
Références
Jaillais Y, Hothorn M, Belkhadir Y, Dabi T, Nimchuk ZL, Meyerowitz EM & Chory J (2011) Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes Dev 25, 232-237.
Wang X & Chory J (2006) Brassinoteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313, 1118-1122.
Belkhadir Y & Jaillais Y (2015) The molecular circuitry of brassinosteroid signaling. New Phytol 206, 522-540.
Hirabayashi S, Matsushita Y, Sato M, Oh-I R, Kasahara M, Abe H & Nyunoya H (2004) Two proton pump interactors identified from a direct phosphorylation screening of a rice cDNA library by using a recombinant BRI1 receptor kinase. Plant Biotechnol 21, 35-45.
Wang ZX, Wang J, Jiang J, Wang J, Chen L, Fan SL, Wu JW & Wang X (2014) Structural insights into the negative regulation of BRI1 signaling by BRI1-interacting protein BKI1. Cell Res 24, 1328-1341.
Wang H, Yang C, Zhang C, Wang N, Lu D, Wang J, Zhang S, Wang ZX, Ma H & Wang X (2011) Dual role of BKI1 and 14-3-3 s in Brassinosteroid signaling to link receptor with transcription factors. Dev Cell 21, 825-834.
Santiago J, Henzler C & Hothorn M (2013) Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases. Science 341, 889-892.
Jaillais Y, Belkhadir Y, Balsemão-Pires E, Dangl JL & Chory J (2011) Extracellular leucine-rich repeats as a platform for receptor/coreceptor complex formation. Proc Natl Acad Sci USA 108, 8503-8507.
Jiang J, Wang T, Wu Z, Wang J, Zhang C, Wang H, Wang ZX & Wang X (2015) The intrinsically disordered protein BKI1 is essential for inhibiting BRI1 signaling in plants. Mol Plant 8, 1675-1678.
Singh AP, Fridman Y, Holland N, Ackerman-Lavert M, Zananiri R, Jaillais Y, Henn A & Savaldi-Goldstein S (2018) Interdependent nutrient availability and steroid hormone signals facilitate root growth plasticity. Dev Cell 46, 59-72.e4.
Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD & Bairoch A (2003) ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31, 3784-3788.
Simon MLA, Platre MP, Marquès-Bueno MM, Armengot L, Stanislas T, Bayle V, Caillaud MC & Jaillais Y (2016) A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants. Nat Plants 2, 16089.
Kang YH & Hardtke CS (2016) Arabidopsis MAKR 5 is a positive effector of BAM 3-dependent CLE 45 signaling. EMBO Rep 17, 1145-1154.
Xuan W, Audenaert D, Parizot B, Möller BK, Njo MF, De Rybel B, De Rop G, Van Isterdael G, Mähönen AP, Vanneste S et al. (2015) Root cap-derived auxin pre-patterns the longitudinal axis of the arabidopsis root. Curr Biol 25, 1381-1388.
Platre MP, Noack LC, Doumane M, Bayle V, Simon MLA, Maneta-Peyret L, Fouillen L, Stanislas T, Armengot L, Pejchar P et al. (2018) A combinatorial lipid code shapes the electrostatic landscape of plant endomembranes. Dev Cell 45, 465-480.e11.
Platre MP, Bayle V, Armengot L, Bareille J, del Mar M-BM, Creff A, Maneta-Peyret L, Fiche JB, Nollmann M, Miège C et al. (2019) Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine. Science 364, 57-62.
Boutté Y & Jaillais Y (2020) Metabolic cellular communications: feedback mechanisms between membrane lipid homeostasis and plant development. Dev Cell 54, 171-182.
Dubois GA & Jaillais Y (2021) Anionic phospholipid gradients: an uncharacterized frontier of the plant endomembrane network. Plant Physiol 185, 577-592.
Noack LC & Jaillais Y (2020) Functions of anionic lipids in plants. Annu Rev Plant Biol 71, 71-102.
Jaillais Y & Vert G (2016) Brassinosteroid signaling and BRI1 dynamics went underground. Curr Opin Plant Biol 33, 92-100.
Rodriguez-Villalon A, Gujas B, van Wijk R, Munnik T & Hardtke CS (2015) Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching. Dev 142, 1437-1446.
Depuydt S, Rodriguez-Villalon A, Santuari L, Wyser-Rmili C, Ragni L & Hardtke CS (2013) Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3. Proc Natl Acad Sci USA 110, 7074-7079.
Rodriguez-Villalon A, Gujas B, Kang YH, Breda AS, Cattaneo P, Depuydt S & Hardtke CS (2014) Molecular genetic framework for protophloem formation. Proc Natl Acad Sci USA 111, 11551-11556.
Scacchi E, Osmont KS, Beuchat J, Salinas P, Navarrete-Gómez M, Trigueros M, Ferrándiz C & Hardtke CS (2009) Dynamic, auxin-responsive plasma membrane-to-nucleus movement of Arabidopsis BRX. Development 136, 2059-2067.
Marquès-Bueno MM, Armengot L, Noack LC, Bareille J, Rodriguez L, Platre MP, Bayle V, Liu M, Opdenacker D, Vanneste S et al. (2021) Auxin-regulated reversible inhibition of TMK1 signaling by MAKR2 modulates the dynamics of root gravitropism. Curr Biol 31, 228-237.e10.
Armengot L, Marquès-Bueno MM & Jaillais Y (2016) Regulation of polar auxin transport by protein and lipid kinases. J Exp Bot 67, 4015-4037.
Xu T, Dai N, Chen J, Nagawa S, Cao M, Li H, Zhou Z, Chen X, De Rycke R, Rakusová H et al. (2014) Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343, 1025-1028.
Cao M, Chen R, Li P, Yu Y, Zheng R, Ge D, Zheng W, Wang X, Gu Y, Gelová Z et al. (2019) TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature 568, 240-243.
Dai N, Wang W, Patterson SE & Bleecker AB. (2013) The TMK subfamily of receptor-like kinases in arabidopsis display an essential role in growth and a reduced sensitivity to auxin. PLoS One 8, e60990.
Huang R, Zheng R, He J, Zhou Z, Wang J, Xiong Y & Xu T. Noncanonical auxin signaling regulates cell division pattern during lateral root development. Proc Natl Aca Sci 116, 21285-21290
Pan X, Fang L, Liu J, Senay-Aras B, Lin W, Zheng S, Zhang T, Guo J, Manor U, Van Norman J et al. (2020) Auxin-induced signaling protein nanoclustering contributes to cell polarity formation. Nat Commun 11, 1-14.
Jaillais Y & Ott T (2020) The nanoscale organization of the plasma membrane and its importance in signaling: a proteolipid perspective. Plant Physiol 182, 1682-1696.
Smokvarska M, Jaillais Y & Martinière A (2021) Function of membrane domains in Rho-Of-Plant signaling. Plant Physiol 185, 663-681.
Lin D, Nagawa S, Chen J, Cao L, Chen X, Xu T, Li H, Dhonukshe P, Yamamuro C, Friml J et al. (2012) A ROP GTPase-dependent auxin signaling pathway regulates the subcellular distribution of PIN2 in Arabidopsis roots. Curr Biol 22, 1319-1325.
Chen X, Naramoto S, Robert S, Tejos R, Löfke C, Lin D, Yang Z & Friml J (2012) ABP1 and ROP6 GTPase signaling regulate clathrin-mediated endocytosis in Arabidopsis roots. Curr Biol 22, 1326-1332.
Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE & Benfey PN (2010) Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329, 1306-1311.
Goh T, Toyokura K, Yamaguchi N, Okamoto Y, Uehara T, Kaneko S, Takebayashi Y, Kasahara H, Ikeyama Y, Okushima Y et al. (2019) Lateral root initiation requires the sequential induction of transcription factors LBD16 and PUCHI in Arabidopsis thaliana. New Phytol 224, 749-760.
Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215, 403-410.
Van Bel M, Proost S, Wischnitzki E, Movahedi S, Scheerlinck C, Van de Peer Y & Vandepoele K (2012) Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol 158, 590-600.
Carpenter EJ, Matasci N, Ayyampalayam S, Wu S, Sun J, Yu J, Jimenez Vieira FR, Bowler C, Dorrell RG, Gitzendanner MA et al. (2019) Access to RNA-sequencing data from 1173 plant species: The 1000 Plant transcriptomes initiative (1KP). Gigascience 8, 1-7.
Zhang P, Berardini TZ, Ebert D, Li Q, Mi H, Muruganujan A, Prithvi T, Reiser L, Sawant S, Thomas PD et al. (2020) PhyloGenes: An online phylogenetics and functional genomics resource for plant gene function inference. Plant Direct 4, 12.
Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U & Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318, 801-806.
Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K & Timmermans MCP (2019) Spatiotemporal developmental trajectories in the arabidopsis root revealed using high-throughput single-cell RNA sequencing. Dev Cell 48, 840-852.e5.
Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K et al. (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J 55, 526-542.
O’Malley RC, Huang SSC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A & Ecker JR (2016) Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165, 1280-1292.
Guo Y, Qin G, Gu H & Qu LJ (2009) Dof5.6/HCA2, a dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in Arabidopsis. Plant Cell 21, 3518-3534.
Shi D, Jouannet V, Agustí J, Kaul V, Levitsky V, Sanchez P, Mironova VV & Greb T. (2020) Tissue-specific transcriptome profiling of the Arabidopsis thaliana inflorescence stem reveals local cellular signatures. bioRxiv 10, 941492.
Ward JM, Cufr CA, Denzel MA & Neff MM (2005) The Dof Transcription factor OBP3 modulates phytochrome and cryptochrome signaling in arabidopsis. Plant Cell 17, 475-485.
Wang L, Hua D, He J, Duan Y, Chen Z, Hong X & Gong Z (2011) Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in arabidopsis. PLoS Genet 7, e1002172.
Graeff M, Straub D, Eguen T, Dolde U, Rodrigues V, Brandt R & Wenkel S (2016) Microprotein-mediated recruitment of CONSTANS into a TOPLESS trimeric complex represses flowering in arabidopsis. PLOS Genet 12, e1005959.
Hardtke CS & Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17, 1405-1411.
Krogan NT, Ckurshumova W, Marcos D, Caragea AE & Berleth T (2012) Deletion of MP/ARF5 domains III and IV reveals a requirement for Aux/IAA regulation in Arabidopsis leaf vascular patterning. New Phytol 194, 391-401.
Miyashima S, Roszak P, Sevilem I, Toyokura K, Blob B, Heo J, Mellor N, Help-Rinta-Rahko H, Otero S, Smet W et al. (2019) Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature 565, 490-494.
Jones DT, Taylor WR & Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8, 275-282.
Tamura K, Stecher G, Peterson D, Filipski A & Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30, 2725-2729.
Mergner J, Frejno M, Messerer M, Lang D, Samaras P, Wilhelm M, Mayer KFX, Schwechheimer C & Kuster B (2020) Proteomic and transcriptomic profiling of aerial organ development in Arabidopsis. Sci Data 7.
Pignatta D, Erdmann RM, Scheer E, Picard CL, Bell GW & Gehring M (2014) Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting. Elife 3, 3198.
Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, Arenas-Huertero C & Chua N-H (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24, 4333-4345.
Ryu KH, Huang L, Kang HM & Schiefelbein J (2019) Single-cell RNA sequencing resolves molecular relationships among individual plant cells. Plant Physiol 179, 1444-1456.