Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA.


Journal

Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648

Informations de publication

Date de publication:
12 2021
Historique:
received: 14 03 2020
accepted: 11 06 2021
pubmed: 24 7 2021
medline: 20 4 2022
entrez: 23 7 2021
Statut: ppublish

Résumé

Circulating tumor-derived DNA (ctDNA) is an emerging biomarker for many cancers, but the limited sensitivity of current detection methods reduces its utility for diagnosing minimal residual disease. Here we describe phased variant enrichment and detection sequencing (PhasED-seq), a method that uses multiple somatic mutations in individual DNA fragments to improve the sensitivity of ctDNA detection. Leveraging whole-genome sequences from 2,538 tumors, we identify phased variants and their associations with mutational signatures. We show that even without molecular barcodes, the limits of detection of PhasED-seq outperform prior methods, including duplex barcoding, allowing ctDNA detection in the ppm range in participant samples. We profiled 678 specimens from 213 participants with B cell lymphomas, including serial cell-free DNA samples before and during therapy for diffuse large B cell lymphoma. In participants with undetectable ctDNA after two cycles of therapy using a next-generation sequencing-based approach termed cancer personalized profiling by deep sequencing, an additional 25% have ctDNA detectable by PhasED-seq and have worse outcomes. Finally, we demonstrate the application of PhasED-seq to solid tumors.

Identifiants

pubmed: 34294911
doi: 10.1038/s41587-021-00981-w
pii: 10.1038/s41587-021-00981-w
pmc: PMC8678141
mid: NIHMS1714594
doi:

Substances chimiques

Biomarkers, Tumor 0
Circulating Tumor DNA 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1537-1547

Subventions

Organisme : NCI NIH HHS
ID : R01 CA254179
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA009302
Pays : United States
Organisme : NCI NIH HHS
ID : R43 CA199142
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA229766
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA194389
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA233975
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA244526
Pays : United States
Organisme : NCI NIH HHS
ID : K08 CA241076
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA188298
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA257655
Pays : United States

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Diehl, F. et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14, 985–990 (2008).
pubmed: 18670422 doi: 10.1038/nm.1789
Newman, A. M. et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat. Biotechnol. 34, 547–555 (2016).
pubmed: 27018799 pmcid: 4907374 doi: 10.1038/nbt.3520
Scherer, F. et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci. Transl. Med. 8, 364ra155 (2016).
pubmed: 27831904 pmcid: 5490494 doi: 10.1126/scitranslmed.aai8545
Chabon, J. J. et al. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat. Commun. 7, 11815 (2016).
pubmed: 27283993 pmcid: 4906406 doi: 10.1038/ncomms11815
Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra224 (2014).
doi: 10.1126/scitranslmed.3007094
Sozzi, G. et al. Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Res. 61, 4675–4678 (2001).
pubmed: 11406535
Thierry, A. R. et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat. Med. 20, 430–435 (2014).
pubmed: 24658074 doi: 10.1038/nm.3511
Tie, J. et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci. Transl. Med. 8, 346ra392 (2016).
doi: 10.1126/scitranslmed.aaf6219
Kalinich, M. & Haber, D. A. Cancer detection: seeking signals in blood. Science 359, 866–867 (2018).
pubmed: 29472467 pmcid: 6469388 doi: 10.1126/science.aas9102
Phallen, J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aan2415 (2017).
Abbosh, C., Birkbak, N. J. & Swanton, C. Early stage NSCLC—challenges to implementing ctDNA-based screening and MRD detection. Nat. Rev. Clin. Oncol. 15, 577–586 (2018).
pubmed: 29968853 doi: 10.1038/s41571-018-0058-3
Abbosh, C. et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451 (2017).
pubmed: 28445469 pmcid: 5812436 doi: 10.1038/nature22364
Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20, 548–554 (2014).
pubmed: 24705333 pmcid: 4016134 doi: 10.1038/nm.3519
Kurtz, D. M. et al. Circulating tumor DNA measurements as early outcome predictors in diffuse large B cell lymphoma. J. Clin. Oncol. 36, 2845–2853 (2018).
pubmed: 30125215 pmcid: 6161832 doi: 10.1200/JCO.2018.78.5246
Roschewski, M. et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B cell lymphoma: a correlative biomarker study. Lancet Oncol. 16, 541–549 (2015).
pubmed: 25842160 pmcid: 4460610 doi: 10.1016/S1470-2045(15)70106-3
Garcia-Murillas, I. et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl. Med. 7, 302ra133 (2015).
pubmed: 26311728 doi: 10.1126/scitranslmed.aab0021
Schmitt, M. W. et al. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl Acad. Sci. USA 109, 14508–14513 (2012).
pubmed: 22853953 pmcid: 3437896 doi: 10.1073/pnas.1208715109
Kennedy, S. R. et al. Detecting ultralow-frequency mutations by duplex sequencing. Nat. Protoc. 9, 2586–2606 (2014).
pubmed: 25299156 pmcid: 4271547 doi: 10.1038/nprot.2014.170
Medina Diaz, I. et al. Performance of Streck cfDNA blood collection tubes for liquid biopsy testing. PLoS ONE 11, e0166354 (2016).
pubmed: 27832189 pmcid: 5104415 doi: 10.1371/journal.pone.0166354
de Yebenes, V. G. & Ramiro, A. R. Activation-induced deaminase: light and dark sides. Trends Mol. Med. 12, 432–439 (2006).
pubmed: 16861038 doi: 10.1016/j.molmed.2006.07.001
Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B cell diffuse large-cell lymphomas. Nature 412, 341–346 (2001).
pubmed: 11460166 doi: 10.1038/35085588
Jiang, P. et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc. Natl Acad. Sci. USA 112, E1317–E1325 (2015).
pubmed: 25646427 pmcid: 4372002
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).
pubmed: 23945592 pmcid: 3776390 doi: 10.1038/nature12477
Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).
pubmed: 32025018 pmcid: 7054213 doi: 10.1038/s41586-020-1943-3
Burns, M. B., Temiz, N. A. & Harris, R. S. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat. Genet. 45, 977–983 (2013).
pubmed: 23852168 pmcid: 3902892 doi: 10.1038/ng.2701
Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat. Genet. 47, 1402–1407 (2015).
pubmed: 26551669 pmcid: 4783858 doi: 10.1038/ng.3441
Khodabakhshi, A. H. et al. Recurrent targets of aberrant somatic hypermutation in lymphoma. Oncotarget 3, 1308–1319 (2012).
pubmed: 23131835 pmcid: 3717795 doi: 10.18632/oncotarget.653
Schmitz, R. et al. Genetics and pathogenesis of diffuse large B cell lymphoma. N. Engl. J. Med. 378, 1396–1407 (2018).
pubmed: 29641966 pmcid: 6010183 doi: 10.1056/NEJMoa1801445
Rowley, J. D. Chromosome studies in the non-Hodgkin’s lymphomas: the role of the 14;18 translocation. J. Clin. Oncol. 6, 919–925 (1988).
pubmed: 3284977 doi: 10.1200/JCO.1988.6.5.919
Schmitz, R. et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490, 116–120 (2012).
pubmed: 22885699 pmcid: 3609867 doi: 10.1038/nature11378
Alizadeh, A. A. et al. Distinct types of diffuse large B cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).
doi: 10.1038/35000501 pubmed: 10676951
Lenz, G. et al. Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell-like diffuse large B cell lymphoma. J. Exp. Med. 204, 633–643 (2007).
pubmed: 17353367 pmcid: 2137913 doi: 10.1084/jem.20062041
Morin, R. D. et al. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood 122, 1256–1265 (2013).
pubmed: 23699601 pmcid: 3744992 doi: 10.1182/blood-2013-02-483727
Qian, J. et al. B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell 159, 1524–1537 (2014).
pubmed: 25483777 pmcid: 4272762 doi: 10.1016/j.cell.2014.11.013
Richter, J. et al. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat. Genet. 44, 1316–1320 (2012).
pubmed: 23143595 doi: 10.1038/ng.2469
Puente, X. S. et al. Noncoding recurrent mutations in chronic lymphocytic leukaemia. Nature 526, 519–524 (2015).
pubmed: 26200345 doi: 10.1038/nature14666
Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B cell lymphoma. Nat. Genet. 43, 830–837 (2011).
pubmed: 21804550 pmcid: 3297422 doi: 10.1038/ng.892
Steidl, C. et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471, 377–381 (2011).
pubmed: 21368758 pmcid: 3902849 doi: 10.1038/nature09754
Nakamura, N. et al. Analysis of the immunoglobulin heavy chain gene variable region of CD5-positive and -negative diffuse large B cell lymphoma. Leukemia 15, 452–457 (2001).
Wan, J. C. M. et al. ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaz8084 (2020).
Chabon, J. J. et al. Integrating genomic features for non-invasive early lung cancer detection. Nature 580, 245–251 (2020).
pubmed: 32269342 pmcid: 8230734 doi: 10.1038/s41586-020-2140-0
Razavi, P. et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat. Med. 25, 1928–1937 (2019).
pubmed: 31768066 pmcid: 7061455 doi: 10.1038/s41591-019-0652-7
Bratman, S. V. et al. Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nat. Cancer 1, 873–881 (2020).
doi: 10.1038/s43018-020-0096-5 pubmed: 35121950
Reinert, T. et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol https://doi.org/10.1001/jamaoncol.2019.0528 (2019).
Leary, R. J. et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med. 2, 20ra14 (2010).
pubmed: 20371490 pmcid: 2858564 doi: 10.1126/scitranslmed.3000702
Leary, R. J. et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci. Transl. Med. 4, 162ra154 (2012).
pubmed: 23197571 pmcid: 3641759 doi: 10.1126/scitranslmed.3004742
Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).
pubmed: 32025012 pmcid: 7025897 doi: 10.1038/s41586-019-1913-9
Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).
pubmed: 29226797 pmcid: 5882485 doi: 10.1056/NEJMoa1707447
Kurtz, D. M. et al. Reply to J. Wang et al. J. Clin. Oncol. 37, 755–757 (2019).
pubmed: 30753108 doi: 10.1200/JCO.18.01907
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).
Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B. S. & Swanton, C. DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol 17, 31 (2016).
pubmed: 26899170 pmcid: 4762164 doi: 10.1186/s13059-016-0893-4
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
pubmed: 30423086 pmcid: 6129281 doi: 10.1093/bioinformatics/bty560
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168 pmcid: 2705234
Bozdech, Z. et al. Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol. 4, R9 (2003).
pubmed: 12620119 pmcid: 151308 doi: 10.1186/gb-2003-4-2-r9
Jaeger, J. A., Turner, D. H. & Zuker, M. Improved predictions of secondary structures for RNA. Proc. Natl Acad. Sci. USA 86, 7706–7710 (1989).
pubmed: 2479010 pmcid: 298139 doi: 10.1073/pnas.86.20.7706
Sugimoto, N., Nakano, S., Yoneyama, M. & Honda, K. Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Res. 24, 4501–4505 (1996).
pubmed: 8948641 pmcid: 146261 doi: 10.1093/nar/24.22.4501
Lu, Z. et al. BCL6 breaks occur at different AID sequence motifs in Ig-BCL6 and non-Ig-BCL6 rearrangements. Blood 121, 4551–4554 (2013).
pubmed: 23476051 pmcid: 3668488 doi: 10.1182/blood-2012-10-464958
Robbiani, D. F. et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135, 1028–1038 (2008).
pubmed: 19070574 pmcid: 2713603 doi: 10.1016/j.cell.2008.09.062
Lieber, M. R. Mechanisms of human lymphoid chromosomal translocations. Nat. Rev. Cancer 16, 387–398 (2016).
pubmed: 27220482 pmcid: 5336345 doi: 10.1038/nrc.2016.40
Van der Auwera, G. A. et al. From FastQ data to high-confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1–11.10.33 (2013).
Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).
pubmed: 22300766 pmcid: 3290792 doi: 10.1101/gr.129684.111
Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).
pubmed: 23396013 pmcid: 3833702 doi: 10.1038/nbt.2514
Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods 15, 591–594 (2018).
pubmed: 30013048
Moding, E. J. et al. Circulating tumor DNA dynamics predict benefit from consolidation immunotherapy in locally advanced non-small-cell lung cancer. Nat. Cancer 1, 176–183 (2020).
pubmed: 34505064 pmcid: 8425388 doi: 10.1038/s43018-019-0011-0

Auteurs

David M Kurtz (DM)

Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.
Stanford Cancer Institute, Stanford University, Stanford, CA, USA.

Joanne Soo (J)

Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.

Lyron Co Ting Keh (L)

Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.

Stefan Alig (S)

Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.

Jacob J Chabon (JJ)

Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
Foresight Diagnostics, Aurora, CO, USA.

Brian J Sworder (BJ)

Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.

Andre Schultz (A)

Stanford Cancer Institute, Stanford University, Stanford, CA, USA.

Michael C Jin (MC)

Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.

Florian Scherer (F)

Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.
Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Andrea Garofalo (A)

Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.

Charles W Macaulay (CW)

Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.

Emily G Hamilton (EG)

Program in Cancer Biology, Stanford University, Stanford, CA, USA.

Binbin Chen (B)

Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.
Department of Genetics, Stanford University, Stanford, CA, USA.

Mari Olsen (M)

Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.

Joseph G Schroers-Martin (JG)

Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.
Division of Hematology, Department of Medicine, Stanford University, Stanford, CA, USA.

Alexander F M Craig (AFM)

Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.

Everett J Moding (EJ)

Department of Radiation Oncology, Stanford University, Stanford, CA, USA.

Mohammad S Esfahani (MS)

Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.

Chih Long Liu (CL)

Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.

Ulrich Dührsen (U)

Department of Hematology and Stem Cell Transplantation, West German Cancer Center Essen, University Hospital Essen, Essen, Germany.

Andreas Hüttmann (A)

Department of Hematology and Stem Cell Transplantation, West German Cancer Center Essen, University Hospital Essen, Essen, Germany.

René-Olivier Casasnovas (RO)

Department of Hematology, Hopital F. Mitterrand, CHU Dijon and INSERM, Dijon, France.

Jason R Westin (JR)

Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Mark Roschewski (M)

Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Wyndham H Wilson (WH)

Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Gianluca Gaidano (G)

Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy.

Davide Rossi (D)

Hematology, Oncology Institute of Southern Switzerland and Institute of Oncology Research, Bellinzona, Switzerland.

Maximilian Diehn (M)

Stanford Cancer Institute, Stanford University, Stanford, CA, USA. diehn@stanford.edu.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA. diehn@stanford.edu.
Department of Radiation Oncology, Stanford University, Stanford, CA, USA. diehn@stanford.edu.

Ash A Alizadeh (AA)

Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA. arasha@stanford.edu.
Stanford Cancer Institute, Stanford University, Stanford, CA, USA. arasha@stanford.edu.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA. arasha@stanford.edu.
Division of Hematology, Department of Medicine, Stanford University, Stanford, CA, USA. arasha@stanford.edu.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH