Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA.
Journal
Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
received:
14
03
2020
accepted:
11
06
2021
pubmed:
24
7
2021
medline:
20
4
2022
entrez:
23
7
2021
Statut:
ppublish
Résumé
Circulating tumor-derived DNA (ctDNA) is an emerging biomarker for many cancers, but the limited sensitivity of current detection methods reduces its utility for diagnosing minimal residual disease. Here we describe phased variant enrichment and detection sequencing (PhasED-seq), a method that uses multiple somatic mutations in individual DNA fragments to improve the sensitivity of ctDNA detection. Leveraging whole-genome sequences from 2,538 tumors, we identify phased variants and their associations with mutational signatures. We show that even without molecular barcodes, the limits of detection of PhasED-seq outperform prior methods, including duplex barcoding, allowing ctDNA detection in the ppm range in participant samples. We profiled 678 specimens from 213 participants with B cell lymphomas, including serial cell-free DNA samples before and during therapy for diffuse large B cell lymphoma. In participants with undetectable ctDNA after two cycles of therapy using a next-generation sequencing-based approach termed cancer personalized profiling by deep sequencing, an additional 25% have ctDNA detectable by PhasED-seq and have worse outcomes. Finally, we demonstrate the application of PhasED-seq to solid tumors.
Identifiants
pubmed: 34294911
doi: 10.1038/s41587-021-00981-w
pii: 10.1038/s41587-021-00981-w
pmc: PMC8678141
mid: NIHMS1714594
doi:
Substances chimiques
Biomarkers, Tumor
0
Circulating Tumor DNA
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1537-1547Subventions
Organisme : NCI NIH HHS
ID : R01 CA254179
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA009302
Pays : United States
Organisme : NCI NIH HHS
ID : R43 CA199142
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA229766
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA194389
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA233975
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA244526
Pays : United States
Organisme : NCI NIH HHS
ID : K08 CA241076
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA188298
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA257655
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Diehl, F. et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14, 985–990 (2008).
pubmed: 18670422
doi: 10.1038/nm.1789
Newman, A. M. et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat. Biotechnol. 34, 547–555 (2016).
pubmed: 27018799
pmcid: 4907374
doi: 10.1038/nbt.3520
Scherer, F. et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci. Transl. Med. 8, 364ra155 (2016).
pubmed: 27831904
pmcid: 5490494
doi: 10.1126/scitranslmed.aai8545
Chabon, J. J. et al. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat. Commun. 7, 11815 (2016).
pubmed: 27283993
pmcid: 4906406
doi: 10.1038/ncomms11815
Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra224 (2014).
doi: 10.1126/scitranslmed.3007094
Sozzi, G. et al. Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Res. 61, 4675–4678 (2001).
pubmed: 11406535
Thierry, A. R. et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat. Med. 20, 430–435 (2014).
pubmed: 24658074
doi: 10.1038/nm.3511
Tie, J. et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci. Transl. Med. 8, 346ra392 (2016).
doi: 10.1126/scitranslmed.aaf6219
Kalinich, M. & Haber, D. A. Cancer detection: seeking signals in blood. Science 359, 866–867 (2018).
pubmed: 29472467
pmcid: 6469388
doi: 10.1126/science.aas9102
Phallen, J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aan2415 (2017).
Abbosh, C., Birkbak, N. J. & Swanton, C. Early stage NSCLC—challenges to implementing ctDNA-based screening and MRD detection. Nat. Rev. Clin. Oncol. 15, 577–586 (2018).
pubmed: 29968853
doi: 10.1038/s41571-018-0058-3
Abbosh, C. et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451 (2017).
pubmed: 28445469
pmcid: 5812436
doi: 10.1038/nature22364
Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20, 548–554 (2014).
pubmed: 24705333
pmcid: 4016134
doi: 10.1038/nm.3519
Kurtz, D. M. et al. Circulating tumor DNA measurements as early outcome predictors in diffuse large B cell lymphoma. J. Clin. Oncol. 36, 2845–2853 (2018).
pubmed: 30125215
pmcid: 6161832
doi: 10.1200/JCO.2018.78.5246
Roschewski, M. et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B cell lymphoma: a correlative biomarker study. Lancet Oncol. 16, 541–549 (2015).
pubmed: 25842160
pmcid: 4460610
doi: 10.1016/S1470-2045(15)70106-3
Garcia-Murillas, I. et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl. Med. 7, 302ra133 (2015).
pubmed: 26311728
doi: 10.1126/scitranslmed.aab0021
Schmitt, M. W. et al. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl Acad. Sci. USA 109, 14508–14513 (2012).
pubmed: 22853953
pmcid: 3437896
doi: 10.1073/pnas.1208715109
Kennedy, S. R. et al. Detecting ultralow-frequency mutations by duplex sequencing. Nat. Protoc. 9, 2586–2606 (2014).
pubmed: 25299156
pmcid: 4271547
doi: 10.1038/nprot.2014.170
Medina Diaz, I. et al. Performance of Streck cfDNA blood collection tubes for liquid biopsy testing. PLoS ONE 11, e0166354 (2016).
pubmed: 27832189
pmcid: 5104415
doi: 10.1371/journal.pone.0166354
de Yebenes, V. G. & Ramiro, A. R. Activation-induced deaminase: light and dark sides. Trends Mol. Med. 12, 432–439 (2006).
pubmed: 16861038
doi: 10.1016/j.molmed.2006.07.001
Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B cell diffuse large-cell lymphomas. Nature 412, 341–346 (2001).
pubmed: 11460166
doi: 10.1038/35085588
Jiang, P. et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc. Natl Acad. Sci. USA 112, E1317–E1325 (2015).
pubmed: 25646427
pmcid: 4372002
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).
pubmed: 23945592
pmcid: 3776390
doi: 10.1038/nature12477
Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).
pubmed: 32025018
pmcid: 7054213
doi: 10.1038/s41586-020-1943-3
Burns, M. B., Temiz, N. A. & Harris, R. S. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat. Genet. 45, 977–983 (2013).
pubmed: 23852168
pmcid: 3902892
doi: 10.1038/ng.2701
Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat. Genet. 47, 1402–1407 (2015).
pubmed: 26551669
pmcid: 4783858
doi: 10.1038/ng.3441
Khodabakhshi, A. H. et al. Recurrent targets of aberrant somatic hypermutation in lymphoma. Oncotarget 3, 1308–1319 (2012).
pubmed: 23131835
pmcid: 3717795
doi: 10.18632/oncotarget.653
Schmitz, R. et al. Genetics and pathogenesis of diffuse large B cell lymphoma. N. Engl. J. Med. 378, 1396–1407 (2018).
pubmed: 29641966
pmcid: 6010183
doi: 10.1056/NEJMoa1801445
Rowley, J. D. Chromosome studies in the non-Hodgkin’s lymphomas: the role of the 14;18 translocation. J. Clin. Oncol. 6, 919–925 (1988).
pubmed: 3284977
doi: 10.1200/JCO.1988.6.5.919
Schmitz, R. et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490, 116–120 (2012).
pubmed: 22885699
pmcid: 3609867
doi: 10.1038/nature11378
Alizadeh, A. A. et al. Distinct types of diffuse large B cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).
doi: 10.1038/35000501
pubmed: 10676951
Lenz, G. et al. Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell-like diffuse large B cell lymphoma. J. Exp. Med. 204, 633–643 (2007).
pubmed: 17353367
pmcid: 2137913
doi: 10.1084/jem.20062041
Morin, R. D. et al. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood 122, 1256–1265 (2013).
pubmed: 23699601
pmcid: 3744992
doi: 10.1182/blood-2013-02-483727
Qian, J. et al. B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell 159, 1524–1537 (2014).
pubmed: 25483777
pmcid: 4272762
doi: 10.1016/j.cell.2014.11.013
Richter, J. et al. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat. Genet. 44, 1316–1320 (2012).
pubmed: 23143595
doi: 10.1038/ng.2469
Puente, X. S. et al. Noncoding recurrent mutations in chronic lymphocytic leukaemia. Nature 526, 519–524 (2015).
pubmed: 26200345
doi: 10.1038/nature14666
Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B cell lymphoma. Nat. Genet. 43, 830–837 (2011).
pubmed: 21804550
pmcid: 3297422
doi: 10.1038/ng.892
Steidl, C. et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471, 377–381 (2011).
pubmed: 21368758
pmcid: 3902849
doi: 10.1038/nature09754
Nakamura, N. et al. Analysis of the immunoglobulin heavy chain gene variable region of CD5-positive and -negative diffuse large B cell lymphoma. Leukemia 15, 452–457 (2001).
Wan, J. C. M. et al. ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaz8084 (2020).
Chabon, J. J. et al. Integrating genomic features for non-invasive early lung cancer detection. Nature 580, 245–251 (2020).
pubmed: 32269342
pmcid: 8230734
doi: 10.1038/s41586-020-2140-0
Razavi, P. et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat. Med. 25, 1928–1937 (2019).
pubmed: 31768066
pmcid: 7061455
doi: 10.1038/s41591-019-0652-7
Bratman, S. V. et al. Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nat. Cancer 1, 873–881 (2020).
doi: 10.1038/s43018-020-0096-5
pubmed: 35121950
Reinert, T. et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol https://doi.org/10.1001/jamaoncol.2019.0528 (2019).
Leary, R. J. et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med. 2, 20ra14 (2010).
pubmed: 20371490
pmcid: 2858564
doi: 10.1126/scitranslmed.3000702
Leary, R. J. et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci. Transl. Med. 4, 162ra154 (2012).
pubmed: 23197571
pmcid: 3641759
doi: 10.1126/scitranslmed.3004742
Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).
pubmed: 32025012
pmcid: 7025897
doi: 10.1038/s41586-019-1913-9
Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).
pubmed: 29226797
pmcid: 5882485
doi: 10.1056/NEJMoa1707447
Kurtz, D. M. et al. Reply to J. Wang et al. J. Clin. Oncol. 37, 755–757 (2019).
pubmed: 30753108
doi: 10.1200/JCO.18.01907
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).
Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B. S. & Swanton, C. DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol 17, 31 (2016).
pubmed: 26899170
pmcid: 4762164
doi: 10.1186/s13059-016-0893-4
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
pubmed: 30423086
pmcid: 6129281
doi: 10.1093/bioinformatics/bty560
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168
pmcid: 2705234
Bozdech, Z. et al. Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol. 4, R9 (2003).
pubmed: 12620119
pmcid: 151308
doi: 10.1186/gb-2003-4-2-r9
Jaeger, J. A., Turner, D. H. & Zuker, M. Improved predictions of secondary structures for RNA. Proc. Natl Acad. Sci. USA 86, 7706–7710 (1989).
pubmed: 2479010
pmcid: 298139
doi: 10.1073/pnas.86.20.7706
Sugimoto, N., Nakano, S., Yoneyama, M. & Honda, K. Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Res. 24, 4501–4505 (1996).
pubmed: 8948641
pmcid: 146261
doi: 10.1093/nar/24.22.4501
Lu, Z. et al. BCL6 breaks occur at different AID sequence motifs in Ig-BCL6 and non-Ig-BCL6 rearrangements. Blood 121, 4551–4554 (2013).
pubmed: 23476051
pmcid: 3668488
doi: 10.1182/blood-2012-10-464958
Robbiani, D. F. et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135, 1028–1038 (2008).
pubmed: 19070574
pmcid: 2713603
doi: 10.1016/j.cell.2008.09.062
Lieber, M. R. Mechanisms of human lymphoid chromosomal translocations. Nat. Rev. Cancer 16, 387–398 (2016).
pubmed: 27220482
pmcid: 5336345
doi: 10.1038/nrc.2016.40
Van der Auwera, G. A. et al. From FastQ data to high-confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1–11.10.33 (2013).
Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).
pubmed: 22300766
pmcid: 3290792
doi: 10.1101/gr.129684.111
Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).
pubmed: 23396013
pmcid: 3833702
doi: 10.1038/nbt.2514
Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods 15, 591–594 (2018).
pubmed: 30013048
Moding, E. J. et al. Circulating tumor DNA dynamics predict benefit from consolidation immunotherapy in locally advanced non-small-cell lung cancer. Nat. Cancer 1, 176–183 (2020).
pubmed: 34505064
pmcid: 8425388
doi: 10.1038/s43018-019-0011-0