Single-cell alternative polyadenylation analysis delineates GABAergic neuron types.
Alternative polyadenylation
GABAergic neuron
scRNA-seq
Journal
BMC biology
ISSN: 1741-7007
Titre abrégé: BMC Biol
Pays: England
ID NLM: 101190720
Informations de publication
Date de publication:
23 07 2021
23 07 2021
Historique:
received:
19
12
2020
accepted:
17
06
2021
entrez:
24
7
2021
pubmed:
25
7
2021
medline:
1
2
2022
Statut:
epublish
Résumé
Alternative polyadenylation (APA) is emerging as an important mechanism in the post-transcriptional regulation of gene expression across eukaryotic species. Recent studies have shown that APA plays key roles in biological processes, such as cell proliferation and differentiation. Single-cell RNA-seq technologies are widely used in gene expression heterogeneity studies; however, systematic studies of APA at the single-cell level are still lacking. Here, we described a novel computational framework, SAPAS, that utilizes 3'-tag-based scRNA-seq data to identify novel poly(A) sites and quantify APA at the single-cell level. Applying SAPAS to the scRNA-seq data of phenotype characterized GABAergic interneurons, we identified cell type-specific APA events for different GABAergic neuron types. Genes with cell type-specific APA events are enriched for synaptic architecture and communications. In further, we observed a strong enrichment of heritability for several psychiatric disorders and brain traits in altered 3' UTRs and coding sequences of cell type-specific APA events. Finally, by exploring the modalities of APA, we discovered that the bimodal APA pattern of Pak3 could classify chandelier cells into different subpopulations that are from different laminar positions. We established a method to characterize APA at the single-cell level. When applied to a scRNA-seq dataset of GABAergic interneurons, the single-cell APA analysis not only identified cell type-specific APA events but also revealed that the modality of APA could classify cell subpopulations. Thus, SAPAS will expand our understanding of cellular heterogeneity.
Sections du résumé
BACKGROUND
Alternative polyadenylation (APA) is emerging as an important mechanism in the post-transcriptional regulation of gene expression across eukaryotic species. Recent studies have shown that APA plays key roles in biological processes, such as cell proliferation and differentiation. Single-cell RNA-seq technologies are widely used in gene expression heterogeneity studies; however, systematic studies of APA at the single-cell level are still lacking.
RESULTS
Here, we described a novel computational framework, SAPAS, that utilizes 3'-tag-based scRNA-seq data to identify novel poly(A) sites and quantify APA at the single-cell level. Applying SAPAS to the scRNA-seq data of phenotype characterized GABAergic interneurons, we identified cell type-specific APA events for different GABAergic neuron types. Genes with cell type-specific APA events are enriched for synaptic architecture and communications. In further, we observed a strong enrichment of heritability for several psychiatric disorders and brain traits in altered 3' UTRs and coding sequences of cell type-specific APA events. Finally, by exploring the modalities of APA, we discovered that the bimodal APA pattern of Pak3 could classify chandelier cells into different subpopulations that are from different laminar positions.
CONCLUSIONS
We established a method to characterize APA at the single-cell level. When applied to a scRNA-seq dataset of GABAergic interneurons, the single-cell APA analysis not only identified cell type-specific APA events but also revealed that the modality of APA could classify cell subpopulations. Thus, SAPAS will expand our understanding of cellular heterogeneity.
Identifiants
pubmed: 34301239
doi: 10.1186/s12915-021-01076-3
pii: 10.1186/s12915-021-01076-3
pmc: PMC8299648
doi:
Substances chimiques
3' Untranslated Regions
0
PAK3 protein, human
EC 2.7.11.1
p21-Activated Kinases
EC 2.7.11.1
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
144Subventions
Organisme : NIMH NIH HHS
ID : R01 MH109665
Pays : United States
Informations de copyright
© 2021. The Author(s).
Références
Nature. 2010 Apr 29;464(7293):1376-80
pubmed: 20393464
Nat Genet. 2015 Mar;47(3):291-5
pubmed: 25642630
Cell. 2017 Oct 19;171(3):522-539.e20
pubmed: 28942923
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
Nature. 2018 Sep;561(7721):127-131
pubmed: 30150773
Neuron. 2017 May 17;94(4):826-839.e3
pubmed: 28521135
Nat Methods. 2013 Feb;10(2):133-9
pubmed: 23241633
Nat Rev Genet. 2019 Oct;20(10):599-614
pubmed: 31267064
Science. 2014 Aug 1;345(6196):1255263
pubmed: 25082707
Nat Commun. 2014 Nov 20;5:5274
pubmed: 25409906
Front Cell Neurosci. 2019 Jan 10;12:518
pubmed: 30687010
Nature. 2015 Jun 18;522(7556):363-7
pubmed: 25896326
Nat Commun. 2014 Aug 20;5:4698
pubmed: 25140736
Development. 2015 Jan 15;142(2):375-84
pubmed: 25519244
Nat Neurosci. 2004 Apr;7(4):373-9
pubmed: 15004561
Nucleic Acids Res. 2019 Mar 18;47(5):2560-2573
pubmed: 30590745
Cell. 2008 Jul 11;134(1):175-87
pubmed: 18614020
Genome Res. 2008 Jan;18(1):1-12
pubmed: 18032727
Nat Genet. 2013 Nov;45(11):1353-60
pubmed: 24076602
Mol Cell. 2017 Feb 16;65(4):631-643.e4
pubmed: 28212749
Mov Disord. 2019 Jun;34(6):866-875
pubmed: 30957308
Nat Genet. 2018 Jun;50(6):825-833
pubmed: 29785013
Nat Rev Mol Cell Biol. 2017 Jan;18(1):18-30
pubmed: 27677860
Genes Dev. 2013 Nov 1;27(21):2380-96
pubmed: 24145798
Genome Res. 2007 Feb;17(2):156-65
pubmed: 17210931
Nat Biotechnol. 2019 Aug;37(8):907-915
pubmed: 31375807
Cell. 1996 Nov 29;87(5):941-52
pubmed: 8945520
J Cell Sci. 1996 Oct;109 ( Pt 10):2423-7
pubmed: 8923203
Nat Genet. 2019 Jan;51(1):63-75
pubmed: 30478444
Nat Genet. 2019 Mar;51(3):394-403
pubmed: 30804565
Nat Genet. 1998 Sep;20(1):25-30
pubmed: 9731525
RNA. 2011 Apr;17(4):761-72
pubmed: 21343387
Cell. 2018 Aug 23;174(5):1309-1324.e18
pubmed: 30078704
Genome Res. 2013 May;23(5):812-25
pubmed: 23520388
Nat Methods. 2014 Jul;11(7):740-2
pubmed: 24836921
Neuron. 2018 May 2;98(3):495-511.e6
pubmed: 29656876
Nat Genet. 2016 Sep;48(9):1043-8
pubmed: 27455348
J Neurochem. 2014 Sep;130(5):678-92
pubmed: 24720729
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15864-9
pubmed: 21896737
Cereb Cortex. 2018 Feb 1;28(2):411-420
pubmed: 28122807
J Comp Neurol. 2004 Jan 6;468(2):179-89
pubmed: 14648678
Neuron. 1995 Jan;14(1):43-56
pubmed: 7826640
Nat Commun. 2018 Dec 10;9(1):5269
pubmed: 30531953
Neuron. 2007 Jun 21;54(6):873-88
pubmed: 17582329
J Cell Sci. 2001 Nov;114(Pt 22):3991-4000
pubmed: 11739631
Trends Neurosci. 2011 Jan;34(1):10-9
pubmed: 21030095
Cell Rep. 2017 Nov 21;21(8):2082-2089
pubmed: 29166601
Cell. 2010 Oct 29;143(3):379-89
pubmed: 21029861
Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15945-50
pubmed: 20733072
Nat Genet. 2015 Nov;47(11):1228-35
pubmed: 26414678
Nucleic Acids Res. 2005 Jan 12;33(1):201-12
pubmed: 15647503
Nat Genet. 2018 Aug;50(8):1112-1121
pubmed: 30038396
Nat Genet. 2019 Feb;51(2):245-257
pubmed: 30643258
Science. 2013 Jan 4;339(6115):70-4
pubmed: 23180771
Nat Biotechnol. 2020 Jun;38(6):737-746
pubmed: 32341560
Nat Genet. 2018 Jul;50(7):912-919
pubmed: 29942086
J Biol Chem. 2007 Jul 6;282(27):19884-93
pubmed: 17439943
Annu Rev Neurosci. 2012;35:203-25
pubmed: 22443509
Nucleic Acids Res. 2019 Jan 8;47(D1):D766-D773
pubmed: 30357393
Genome Biol. 2018 Mar 28;19(1):45
pubmed: 29592814
Genome Res. 2018 Oct;28(10):1427-1441
pubmed: 30143597
Neuron. 2007 Mar 1;53(5):735-46
pubmed: 17329212
Cell. 2018 Feb 22;172(5):1091-1107.e17
pubmed: 29474909
J Physiol. 2012 Feb 15;590(4):683-94
pubmed: 22199164
Cell. 2009 Aug 21;138(4):673-84
pubmed: 19703394
Trends Neurosci. 2004 Jul;27(7):400-6
pubmed: 15219739
Cell. 2018 Jan 11;172(1-2):106-120.e21
pubmed: 29249356
J Neurosci. 2004 Dec 1;24(48):10816-25
pubmed: 15574732
Genome Res. 2019 Dec;29(12):2104-2116
pubmed: 31744903
Neuron. 2019 Aug 7;103(3):412-422.e4
pubmed: 31221560
PLoS Genet. 2016 Feb 23;12(2):e1005879
pubmed: 26908102
Nature. 2018 Nov;563(7729):72-78
pubmed: 30382198
Biochemistry. 2001 Jul 24;40(29):8581-7
pubmed: 11456498
Nat Rev Neurosci. 2005 Apr;6(4):312-24
pubmed: 15803162
Front Neurosci. 2016 Jan 27;10:16
pubmed: 26858593
Genome Res. 2012 Jun;22(6):1173-83
pubmed: 22454233
Genetics. 2017 Jun;206(2):757-774
pubmed: 28348061
Curr Opin Neurobiol. 2015 Apr;31:81-7
pubmed: 25240150
Bioinformatics. 2018 Jun 1;34(11):1841-1849
pubmed: 29360928
Nat Commun. 2018 Apr 30;9(1):1716
pubmed: 29712909
Neuron. 2016 Jul 20;91(2):260-92
pubmed: 27477017
Science. 2008 Jun 20;320(5883):1643-7
pubmed: 18566288