Biodegradation of metoprolol in oxic and anoxic hyporheic zone sediments: unexpected effects on microbial communities.


Journal

Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612

Informations de publication

Date de publication:
Aug 2021
Historique:
received: 18 02 2021
accepted: 20 07 2021
revised: 19 07 2021
pubmed: 3 8 2021
medline: 1 9 2021
entrez: 2 8 2021
Statut: ppublish

Résumé

Metoprolol is widely used as a beta-blocker and considered an emerging contaminant of environmental concern due to pseudo persistence in wastewater effluents that poses a potential ecotoxicological threat to aquatic ecosystems. Microbial removal of metoprolol in the redox-delineated hyporheic zone (HZ) was investigated using streambed sediments supplemented with 15 or 150 μM metoprolol in a laboratory microcosm incubation under oxic and anoxic conditions. Metoprolol disappeared from the aqueous phase under oxic and anoxic conditions within 65 and 72 days, respectively. Metoprolol was refed twice after initial depletion resulting in accelerated disappearance under both conditions. Metoprolol disappearance was marginal in sterile control microcosms with autoclaved sediment. Metoprolol was transformed mainly to metoprolol acid in oxic microcosms, while metoprolol acid and α-hydroxymetoprolol were formed in anoxic microcosms. Transformation products were transient and disappeared within 30 days under both conditions. Effects of metoprolol on the HZ bacterial community were evaluated using DNA- and RNA-based time-resolved amplicon Illumina MiSeq sequencing targeting the 16S rRNA gene and 16S rRNA, respectively, and were prominent on 16S rRNA rather than 16S rRNA gene level suggesting moderate metoprolol-induced activity-level changes. A positive impact of metoprolol on Sphingomonadaceae and Enterobacteriaceae under oxic and anoxic conditions, respectively, was observed. Nitrifiers were impaired by metoprolol under oxic and anoxic conditions. Collectively, our findings revealed high metoprolol biodegradation potentials in the hyporheic zone under contrasting redox conditions associated with changes in the active microbial communities, thus contributing to the attenuation of micropollutants. KEY POINTS: • High biotic oxic and anoxic metoprolol degradation potentials in the hyporheic zone. • Key metoprolol-associated taxa included Sphingomonadaceae, Enterobacteraceae, and Promicromonosporaceae. • Negative impact of metoprolol on nitrifiers.

Identifiants

pubmed: 34338804
doi: 10.1007/s00253-021-11466-w
pii: 10.1007/s00253-021-11466-w
pmc: PMC8390428
doi:

Substances chimiques

RNA, Ribosomal, 16S 0
Metoprolol GEB06NHM23

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6103-6115

Subventions

Organisme : H2020 European Research Council
ID : 641939

Informations de copyright

© 2021. The Author(s).

Références

Abromaitis V, Racys V, Van Der Marel P, Meulepas RJW (2016) Biodegradation of persistent organics can overcome adsorption–desorption hysteresis in biological activated carbon systems. Chemosphere 149:183–189
doi: 10.1016/j.chemosphere.2016.01.085
Borkar RM, Raju B, Srinivas R, Patel P, Shetty SK (2012) Identification and characterization of stressed degradation products of metoprolol using LC/Q-TOF-ESI-MS/MS and MS
doi: 10.1002/bmc.1721
Cataldo DA, Maroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80
doi: 10.1080/00103627509366547
Coll C, Bier R, Li Z, Langenheder S, Gorokhova E, Sobek A (2020) Association between aquatic micropollutant dissipation and river sediment bacterial communities. Environ Sci Technol 54:14380–14392
doi: 10.1021/acs.est.0c04393
Daims H (2014) The family Nitrospiraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: other major lineages of Bacteria and the Archaea. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 733–749
Dallinger A, Horn MA (2014) Agricultural soil and drilosphere as reservoirs of new and unusual assimilators of 2, 4-dichlorophenol carbon. Environ Microbiol 16:84–100
doi: 10.1111/1462-2920.12209
DeWeerd KA, Saxena A, Nagle DP, Suflita JM (1988) Metabolism of the
doi: 10.1128/aem.54.5.1237-1242.1988
Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J (2017) MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res 45:W180–W188
doi: 10.1093/nar/gkx295
Díaz E, Ferrández A, Prieto MA, García JL (2001) Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Biol Rev 65:523–569
doi: 10.1128/MMBR.65.4.523-569.2001
Ericson JF (2007) An evaluation of the OECD 308 water/sediment systems for investigating the biodegradation of pharmaceuticals. Environ Sci Technol 41:5803–5811
doi: 10.1021/es063043+
Galloway J, Fox A, Lewandowski J, Arnon S (2019) The effect of unsteady streamflow and stream-groundwater interactions on oxygen consumption in a sandy streambed. Sci Rep 9:1–11
doi: 10.1038/s41598-019-56289-y
Grbić-Galić D (1986) O-demethylation, dehydroxylation, ring-reduction and cleavage of aromatic substrates by Enterobacteriaceae under anaerobic conditions. J Appl Bacteriol 61:491–497
doi: 10.1111/j.1365-2672.1986.tb01721.x
Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA-and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491
doi: 10.1128/AEM.66.12.5488-5491.2000
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9
Heider J, Szaleniec M, Suenwoldt K, Boll M (2016) Ethylbenzene dehydrogenase and related molybdenum enzymes involved in oxygen-independent alkyl chain hydroxylation. J Mol Microbiol Biotechnol 26:45–62
doi: 10.1159/000441357
Jaeger A, Posselt M, Betterle A, Schaper J, Mechelke J, Coll C, Lewandowski J (2019) Spatial and temporal variability in attenuation of polar organic micropollutants in an urban lowland stream. Environ Sci Technol 53:2383–2395
doi: 10.1021/acs.est.8b05488
Kelly SL, Kelly DE (2013) Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us? Philos Trans R Soc B 368:20120476
doi: 10.1098/rstb.2012.0476
Kern S, Baumgartner R, Helbling DE, Hollender J, Singer H, Loos MJ, Schwarzenbach RP, Fenner K (2010) A tiered procedure for assessing the formation of biotransformation products of pharmaceuticals and biocides during activated sludge treatment. J Environ Monit 12:2100–2111
doi: 10.1039/c0em00238k
Li Z, McLachlan MS (2019) Biodegradation of chemicals in unspiked surface waters downstream of wastewater treatment plants. Environ Sci Technol 53:1884–1892
doi: 10.1021/acs.est.8b05191
Liu S, Suflita JM (1993) H
doi: 10.1128/aem.59.5.1325-1331.1993
Liu YJ, Zaprasis A, Liu SJ, Drake HL, Horn MA (2011a) The earthworm Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid herbicide degraders. ISME J 5:473–485
doi: 10.1038/ismej.2010.140
Liu YJ, Liu SJ, Drake HL, Horn MA (2013) Consumers of 4-chloro-2-methylphenoxyacetic acid from agricultural soil and drilosphere harbor cadA, r/sdpA, and tfdA-like gene encoding oxygenases. FEMS Microbiol Ecol 86:114–129
doi: 10.1111/1574-6941.12144
Liu YJ, Liu SJ, Drake HL, Horn MA (2011b) Alphaproteobacteria dominate active 2-methyl-4-chlorophenoxyacetic acid herbicide degraders in agricultural soil and drilosphere. Environ Microbiol 13:991–1009
doi: 10.1111/j.1462-2920.2010.02405.x
Lücker S, Daims H (2014) The family Nitrospinaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 231–237
Maurer M, Beate IE, Richle P, Schaffner C, Alder AC (2007) Elimination of β-blockers in sewage treatment plants. Water Res 41:1614–1622
doi: 10.1016/j.watres.2007.01.004
Mechelke J, Rust D, Jaeger A, Hollender J (2020) Enantiomeric fractionation during biotransformation of chiral pharmaceuticals in recirculating water-sediment test flumes. Environ Sci Technol 54:7291–7301
doi: 10.1021/acs.est.0c00767
Peralta-Maraver I, Reiss J, Robertson AL (2018) Interplay of hydrology, community ecology and pollutant attenuation in the hyporheic zone. Sci Total Environ 610:267–275
doi: 10.1016/j.scitotenv.2017.08.036
Perez JM, Kontur WS, Gehl C, Gille DM, Ma Y, Niles AV, Umana G, Donohue TJ, Noguera DR (2021) Redundancy in aromatic O-demethylation and ring-opening reactions in Novosphingobium aromaticivorans and their impact in the metabolism of plant-derived phenolics. Appl Environ Microbiol 87:e02794–e02720
doi: 10.1128/AEM.02794-20
Posselt M, Jaeger A, Schaper JL, Radke M, Benskin JP (2018) Determination of polar organic micropollutants in surface and pore water by high-resolution sampling-direct injection-ultra high performance liquid chromatography-tandem mass spectrometry. Environ Sci Process Impacts 20:1716–1727
doi: 10.1039/C8EM00390D
Posselt M, Mechelke J, Rutere C, Coll C, Jaeger A, Raza M, Meinikmann K, Krause S, Sobek A, Lewandowski J, Horn MA, Hollender J, Benskin JP (2020) Bacterial diversity controls transformation of wastewater-derived organic contaminants in river-simulating flumes. Environ Sci Technol 54:5467–5479
doi: 10.1021/acs.est.9b06928
Prosser JI (2007) Chapter 15 - The ecology of nitrifying bacteria. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, Amsterdam, pp 223–243
doi: 10.1016/B978-044452857-5.50016-3
Qin W, Fan F, Zhu Y, Huang X, Ding A, Liu X, Dou J (2018) Anaerobic biodegradation of benzo(a)pyrene by a novel Cellulosimicrobium cellulans CWS2 isolated from polycyclic aromatic hydrocarbon-contaminated Soil. Braz J Microbiol 49:258–268
doi: 10.1016/j.bjm.2017.04.014
Rabus R, Boll M, Heider J, Meckenstock RU, Buckel W, Einsle O, Ermler U, Golding BT, Gunsalus RP, Kroneck PMH (2016) Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol 26:5–28
doi: 10.1159/000443997
Ramil M, Aref TE, Fink G, Scheurer M, Ternes TA (2010) Fate of beta blockers in aquatic-sediment systems: sorption and biotransformation. Environ Sci Technol 44:962–970
doi: 10.1021/es9027452
Rubirola A, Llorca M, Rodriguez-Mozaz S, Casas N, Rodriguez-Roda I, Barceló D, Buttiglieri G (2014) Characterization of metoprolol biodegradation and its transformation products generated in activated sludge batch experiments and in full scale WWTPs. Water Res 63:21–32
doi: 10.1016/j.watres.2014.05.031
Rühmland S, Wick A, Ternes TA, Barjenbruch M (2015) Fate of pharmaceuticals in a subsurface flow constructed wetland and two ponds. Ecol Eng 80:125–139
doi: 10.1016/j.ecoleng.2015.01.036
Rutere C, Posselt M, Horn MA (2020a) Fate of trace organic compounds in hyporheic zone sediments of contrasting organic carbon content and impact on the microbiome. Water 12:3518
Rutere C, Knoop K, Posselt M, Ho A, Horn MA (2020b) Ibuprofen degradation and associated bacterial communities in hyporheic zone sediments. Microorganisms 8:1245
Schaper JL, Seher W, Nützmann G, Putschew A, Jekel M, Lewandowski J (2018) The fate of polar trace organic compounds in the hyporheic zone. Water Res 140:158–166
doi: 10.1016/j.watres.2018.04.040
Schaper JL, Posselt M, Bouchez C, Jaeger A, Nuetzmann G, Putschew A, Singer G, Lewandowski J (2019) Fate of trace organic compounds in the hyporheic zone: influence of retardation, the benthic biolayer, and organic carbon. Environ Sci Technol 53:4224–4234
doi: 10.1021/acs.est.8b06231
Scheurer M, Ramil M, Metcalfe CD, Groh S, Ternes TA (2010) The challenge of analyzing beta-blocker drugs in sludge and wastewater. Anal Bioanal Chem 396:845–856
doi: 10.1007/s00216-009-3225-7
Schmidt CK, Lange FT, Brauch HJ (2007) Characteristics and evaluation of natural attenuation processes for organic micropollutant removal during riverbank filtration. Water Sci Technol Water Supply 7:1–7
doi: 10.2166/ws.2007.060
Sengupta K, Pal S (2021) A review on microbial diversity and genetic markers involved in methanogenic degradation of hydrocarbons: futuristic prospects of biofuel recovery from contaminated regions. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13666-3
Souchier M, Benali-Raclot D, Casellas C, Ingrand V, Chiron S (2016) Enantiomeric fractionation as a tool for quantitative assessment of biodegradation: the case of metoprolol. Water Res 95:19–26
doi: 10.1016/j.watres.2016.03.010
Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, Sørensen SJ, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85:612–626
Svan A, Hedeland M, Arvidsson T, Jasper JT, Sedlak DL, Pettersson CE (2016) Identification of transformation products from β-blocking agents formed in wetland microcosms using LC-Q-ToF. J Mass Spectrom 51:207–218
doi: 10.1002/jms.3737

Auteurs

Cyrus Rutere (C)

Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany.
Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, Germany.

Malte Posselt (M)

Department of Environmental Science, Stockholm University, Stockholm, Sweden.

Adrian Ho (A)

Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, Germany.

Marcus A Horn (MA)

Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany. horn@ifmb.uni-hannover.de.
Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, Germany. horn@ifmb.uni-hannover.de.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Aerosols Humans Decontamination Air Microbiology Masks
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria

Classifications MeSH