SCITO-seq: single-cell combinatorial indexed cytometry sequencing.
Journal
Nature methods
ISSN: 1548-7105
Titre abrégé: Nat Methods
Pays: United States
ID NLM: 101215604
Informations de publication
Date de publication:
08 2021
08 2021
Historique:
received:
29
05
2020
accepted:
24
06
2021
entrez:
6
8
2021
pubmed:
7
8
2021
medline:
21
9
2021
Statut:
ppublish
Résumé
The development of DNA-barcoded antibodies to tag cell surface molecules has enabled the use of droplet-based single-cell sequencing (dsc-seq) to profile protein abundances from thousands of cells simultaneously. As compared to flow and mass cytometry, the high per cell cost of current dsc-seq-based workflows precludes their use in clinical applications and large-scale pooled screens. Here, we introduce SCITO-seq, a workflow that uses splint oligonucleotides (oligos) to enable combinatorially indexed dsc-seq of DNA-barcoded antibodies from over 10
Identifiants
pubmed: 34354295
doi: 10.1038/s41592-021-01222-3
pii: 10.1038/s41592-021-01222-3
pmc: PMC8643207
mid: NIHMS1757215
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
903-911Subventions
Organisme : NIDDK NIH HHS
ID : P30 DK063720
Pays : United States
Organisme : NIH HHS
ID : DP5 OD023056
Pays : United States
Organisme : NIBIB NIH HHS
ID : T32 EB009383
Pays : United States
Organisme : NIAMS NIH HHS
ID : P30 AR070155
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR071522
Pays : United States
Organisme : NIH HHS
ID : S10 OD018040
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007175
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM134922
Pays : United States
Organisme : NIH HHS
ID : S10 OD021822
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI136972
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG011239
Pays : United States
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).
doi: 10.1016/j.cell.2015.05.002
Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).
doi: 10.1016/j.cell.2015.04.044
Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).
doi: 10.1038/nature14590
Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).
doi: 10.1038/nmeth.4380
Shahi, P., Kim, S. C., Haliburton, J. R., Gartner, Z. J. & Abate, A. R. Abseq: ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Sci. Rep. 7, 44447 (2017).
doi: 10.1038/srep44447
Gerlach, J. P. et al. Combined quantification of intracellular (phospho-)proteins and transcriptomics from fixed single cells. Sci. Rep. 9, 1469 (2019).
doi: 10.1038/s41598-018-37977-7
Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).
doi: 10.1038/nbt.3973
Bandura, D. R. et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–6822 (2009).
doi: 10.1021/ac901049w
Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many features. Cell 165, 780–791 (2016).
doi: 10.1016/j.cell.2016.04.019
Swanson, E. et al. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. eLife 10, e63632 (2021).
doi: 10.7554/eLife.63632
Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. (2021) https://doi.org/10.1038/s41587-021-00927-2
Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018).
doi: 10.1038/nbt.4042
McGinnis, C. S. et al. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat. Methods 16, 619–626 (2019).
doi: 10.1038/s41592-019-0433-8
Stoeckius, M. et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).
doi: 10.1186/s13059-018-1603-1
Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).
doi: 10.1038/nmeth.4177
Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 16, 409–412 (2019).
doi: 10.1038/s41592-019-0392-0
Marguerat, S. et al. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151, 671–683 (2012).
doi: 10.1016/j.cell.2012.09.019
Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
doi: 10.1038/ncomms14049
O’Huallachain, M. et al. Ultra-high throughput single-cell analysis of proteins and RNAs by split-pool synthesis. Commun. Biol. 3, 213 (2020).
doi: 10.1038/s42003-020-0896-2
Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017).
doi: 10.1126/science.aam8940
Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).
doi: 10.1126/science.aau0730
Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).
doi: 10.1038/s41586-019-0969-x
Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).
doi: 10.1126/science.aam8999
Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotechnol. 37, 916–924 (2019).
doi: 10.1038/s41587-019-0147-6
Datlinger, P. et al. Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing. Nat. Methods 18, 635–642 (2021).
doi: 10.1038/s41592-021-01153-z
Heaton, H. et al. Souporcell: robust clustering of single-cell RNA-seq data by genotype without reference genotypes. Nat. Methods 17, 615–620 (2020).
doi: 10.1038/s41592-020-0820-1
Gehring, J., Hwee Park, J., Chen, S., Thomson, M. & Pachter, L. Highly multiplexed single-cell RNA-seq by DNA oligonucleotide tagging of cellular proteins. Nat. Biotechnol. 38, 35–38 (2020).
doi: 10.1038/s41587-019-0372-z
Ferrer-Font, L. et al. Panel design and optimization for high-dimensional immunophenotyping assays using spectral flow cytometry. Curr. Protoc. Cytom. 92, e70 (2020).
pubmed: 32150355
Collin, M. & Bigley, V. Human dendritic cell subsets: an update. Immunology 154, 3–20 (2018).
doi: 10.1111/imm.12888
Zunder, E. R. et al. Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nat. Protoc. 10, 316–333 (2015).
doi: 10.1038/nprot.2015.020
Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).
doi: 10.1038/s41598-019-41695-z