SCITO-seq: single-cell combinatorial indexed cytometry sequencing.


Journal

Nature methods
ISSN: 1548-7105
Titre abrégé: Nat Methods
Pays: United States
ID NLM: 101215604

Informations de publication

Date de publication:
08 2021
Historique:
received: 29 05 2020
accepted: 24 06 2021
entrez: 6 8 2021
pubmed: 7 8 2021
medline: 21 9 2021
Statut: ppublish

Résumé

The development of DNA-barcoded antibodies to tag cell surface molecules has enabled the use of droplet-based single-cell sequencing (dsc-seq) to profile protein abundances from thousands of cells simultaneously. As compared to flow and mass cytometry, the high per cell cost of current dsc-seq-based workflows precludes their use in clinical applications and large-scale pooled screens. Here, we introduce SCITO-seq, a workflow that uses splint oligonucleotides (oligos) to enable combinatorially indexed dsc-seq of DNA-barcoded antibodies from over 10

Identifiants

pubmed: 34354295
doi: 10.1038/s41592-021-01222-3
pii: 10.1038/s41592-021-01222-3
pmc: PMC8643207
mid: NIHMS1757215
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

903-911

Subventions

Organisme : NIDDK NIH HHS
ID : P30 DK063720
Pays : United States
Organisme : NIH HHS
ID : DP5 OD023056
Pays : United States
Organisme : NIBIB NIH HHS
ID : T32 EB009383
Pays : United States
Organisme : NIAMS NIH HHS
ID : P30 AR070155
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR071522
Pays : United States
Organisme : NIH HHS
ID : S10 OD018040
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007175
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM134922
Pays : United States
Organisme : NIH HHS
ID : S10 OD021822
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI136972
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG011239
Pays : United States

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).
doi: 10.1016/j.cell.2015.05.002
Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).
doi: 10.1016/j.cell.2015.04.044
Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).
doi: 10.1038/nature14590
Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).
doi: 10.1038/nmeth.4380
Shahi, P., Kim, S. C., Haliburton, J. R., Gartner, Z. J. & Abate, A. R. Abseq: ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Sci. Rep. 7, 44447 (2017).
doi: 10.1038/srep44447
Gerlach, J. P. et al. Combined quantification of intracellular (phospho-)proteins and transcriptomics from fixed single cells. Sci. Rep. 9, 1469 (2019).
doi: 10.1038/s41598-018-37977-7
Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).
doi: 10.1038/nbt.3973
Bandura, D. R. et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–6822 (2009).
doi: 10.1021/ac901049w
Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many features. Cell 165, 780–791 (2016).
doi: 10.1016/j.cell.2016.04.019
Swanson, E. et al. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. eLife 10, e63632 (2021).
doi: 10.7554/eLife.63632
Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. (2021) https://doi.org/10.1038/s41587-021-00927-2
Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018).
doi: 10.1038/nbt.4042
McGinnis, C. S. et al. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat. Methods 16, 619–626 (2019).
doi: 10.1038/s41592-019-0433-8
Stoeckius, M. et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).
doi: 10.1186/s13059-018-1603-1
Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).
doi: 10.1038/nmeth.4177
Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 16, 409–412 (2019).
doi: 10.1038/s41592-019-0392-0
Marguerat, S. et al. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151, 671–683 (2012).
doi: 10.1016/j.cell.2012.09.019
Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
doi: 10.1038/ncomms14049
O’Huallachain, M. et al. Ultra-high throughput single-cell analysis of proteins and RNAs by split-pool synthesis. Commun. Biol. 3, 213 (2020).
doi: 10.1038/s42003-020-0896-2
Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017).
doi: 10.1126/science.aam8940
Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).
doi: 10.1126/science.aau0730
Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).
doi: 10.1038/s41586-019-0969-x
Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).
doi: 10.1126/science.aam8999
Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotechnol. 37, 916–924 (2019).
doi: 10.1038/s41587-019-0147-6
Datlinger, P. et al. Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing. Nat. Methods 18, 635–642 (2021).
doi: 10.1038/s41592-021-01153-z
Heaton, H. et al. Souporcell: robust clustering of single-cell RNA-seq data by genotype without reference genotypes. Nat. Methods 17, 615–620 (2020).
doi: 10.1038/s41592-020-0820-1
Gehring, J., Hwee Park, J., Chen, S., Thomson, M. & Pachter, L. Highly multiplexed single-cell RNA-seq by DNA oligonucleotide tagging of cellular proteins. Nat. Biotechnol. 38, 35–38 (2020).
doi: 10.1038/s41587-019-0372-z
Ferrer-Font, L. et al. Panel design and optimization for high-dimensional immunophenotyping assays using spectral flow cytometry. Curr. Protoc. Cytom. 92, e70 (2020).
pubmed: 32150355
Collin, M. & Bigley, V. Human dendritic cell subsets: an update. Immunology 154, 3–20 (2018).
doi: 10.1111/imm.12888
Zunder, E. R. et al. Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nat. Protoc. 10, 316–333 (2015).
doi: 10.1038/nprot.2015.020
Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).
doi: 10.1038/s41598-019-41695-z

Auteurs

Byungjin Hwang (B)

Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA, USA.
Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.

David S Lee (DS)

Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA, USA.
Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.

Whitney Tamaki (W)

Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA.

Yang Sun (Y)

Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA, USA.
Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.

Anton Ogorodnikov (A)

Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA, USA.
Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.

George C Hartoularos (GC)

Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA, USA.
Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
Graduate Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, CA, USA.

Aidan Winters (A)

Graduate Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, CA, USA.

Bertrand Z Yeung (BZ)

BioLegend Inc, San Diego, CA, USA.

Kristopher L Nazor (KL)

BioLegend Inc, San Diego, CA, USA.

Yun S Song (YS)

Computer Science Division, University of California, Berkeley, Berkeley, CA, USA.
Department of Statistics, University of California, Berkeley, CA, USA.
Chan Zuckerberg Biohub, San Francisco, CA, USA.

Eric D Chow (ED)

Center for Advanced Technology, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.

Matthew H Spitzer (MH)

Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA.
Departments of Otolaryngology and Microbiology and Immunology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
Chan Zuckerberg Biohub, San Francisco, CA, USA.

Chun Jimmie Ye (CJ)

Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA, USA. jimmie.ye@ucsf.edu.
Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA. jimmie.ye@ucsf.edu.
Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA. jimmie.ye@ucsf.edu.
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA. jimmie.ye@ucsf.edu.
Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA. jimmie.ye@ucsf.edu.
Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA. jimmie.ye@ucsf.edu.
Chan Zuckerberg Biohub, San Francisco, CA, USA. jimmie.ye@ucsf.edu.
J. David Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA. jimmie.ye@ucsf.edu.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH