Inflammasome Signaling Regulates the Microbial-Neuroimmune Axis and Visceral Pain in Mice.
Animals
Anti-Bacterial Agents
/ pharmacology
Brain
/ drug effects
Capsaicin
/ toxicity
Caspase 1
/ physiology
Colon
/ drug effects
Female
Gastrointestinal Microbiome
Inflammasomes
/ drug effects
Inflammation
/ complications
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Neuroimmunomodulation
Signal Transduction
Visceral Pain
/ etiology
gut commensal microbiota
gut–brain axis
immune system
inflammasome
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
03 Aug 2021
03 Aug 2021
Historique:
received:
14
06
2021
revised:
21
07
2021
accepted:
27
07
2021
entrez:
7
8
2021
pubmed:
8
8
2021
medline:
14
8
2021
Statut:
epublish
Résumé
Interactions between the intestinal microbiota, immune system and nervous system are essential for homeostasis in the gut. Inflammasomes contribute to innate immunity and brain-gut interactions, but their role in microbiota-neuro-immune interactions is not clear. Therefore, we investigated the effect of the inflammasome on visceral pain and local and systemic neuroimmune responses after antibiotic-induced changes to the microbiota. Wild-type (WT) and caspase-1/11 deficient (Casp1 KO) mice were orally treated for 2 weeks with an antibiotic cocktail (Abx, Bacitracin A and Neomycin), followed by quantification of representative fecal commensals (by qPCR), cecal short chain fatty acids (by HPLC), pathways implicated in the gut-neuro-immune axis (by RT-qPCR, immunofluorescence staining, and flow cytometry) in addition to capsaicin-induced visceral pain responses. Abx-treatment in WT-mice resulted in an increase in colonic macrophages, central neuro-immune interactions, colonic inflammasome and nociceptive receptor gene expression and a reduction in capsaicin-induced visceral pain. In contrast, these responses were attenuated in Abx-treated Casp1 KO mice. Collectively, the data indicate an important role for the inflammasome pathway in functional and inflammatory gastrointestinal conditions where pain and alterations in microbiota composition are prominent.
Identifiants
pubmed: 34361102
pii: ijms22158336
doi: 10.3390/ijms22158336
pmc: PMC8371481
pii:
doi:
Substances chimiques
Anti-Bacterial Agents
0
Inflammasomes
0
Casp1 protein, mouse
EC 3.4.22.36
Caspase 1
EC 3.4.22.36
Capsaicin
S07O44R1ZM
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Science Foundation Ireland
ID : SFI-12/RC/2273
Pays : Ireland
Références
Neurogastroenterol Motil. 2013 Aug;25(8):e515-29
pubmed: 23711047
Br J Anaesth. 2016 Dec;117(6):693-707
pubmed: 27956668
Nat Cell Biol. 2019 Nov;21(11):1425-1435
pubmed: 31685994
Environ Microbiol. 2017 Jan;19(1):29-41
pubmed: 27928878
Mol Cell. 2002 Aug;10(2):417-26
pubmed: 12191486
Sci Rep. 2019 Feb 20;9(1):2358
pubmed: 30787385
Neurogastroenterol Motil. 2018 Apr;30(4):e13227
pubmed: 29052293
Cell. 2014 Jul 17;158(2):300-313
pubmed: 25036630
Am J Physiol Gastrointest Liver Physiol. 2006 Jan;290(1):G30-5
pubmed: 16150873
Front Immunol. 2017 Jul 28;8:838
pubmed: 28804483
FEMS Microbiol Lett. 2012 Dec;337(1):38-47
pubmed: 22967145
Lancet. 2020 Nov 21;396(10263):1664-1674
pubmed: 33049221
Exp Neurol. 2021 Mar;337:113593
pubmed: 33387462
Int J Mol Sci. 2021 Feb 01;22(3):
pubmed: 33535595
Open Biochem J. 2010 May 13;4:53-8
pubmed: 20563285
Cytokine Growth Factor Rev. 2014 Dec;25(6):715-30
pubmed: 24803013
Eur J Pain. 2010 Apr;14(4):351-8
pubmed: 19683949
Nat Commun. 2018 Jul 20;9(1):2872
pubmed: 30030441
Mol Psychiatry. 2016 Jun;21(6):797-805
pubmed: 27090302
Front Endocrinol (Lausanne). 2020 Jan 31;11:25
pubmed: 32082260
Biomedicines. 2020 Nov 20;8(11):
pubmed: 33233503
Front Immunol. 2020 Dec 10;11:604179
pubmed: 33362788
Signal Transduct Target Ther. 2021 Jul 2;6(1):247
pubmed: 34210954
J Neuroinflammation. 2018 Oct 27;15(1):298
pubmed: 30368255
Nat Rev Neurosci. 2014 Feb;15(2):84-97
pubmed: 24399084
Cell. 2012 Aug 3;150(3):606-19
pubmed: 22819539
Artif Cells Nanomed Biotechnol. 2016 Dec;44(8):1933-1937
pubmed: 26697916
Inflamm Bowel Dis. 2003 Jul;9(4):224-9
pubmed: 12902845
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):E6065-E6074
pubmed: 29895691
Int J Mol Sci. 2020 May 26;21(11):
pubmed: 32466593
Nat Med. 2007 Jan;13(1):35-7
pubmed: 17159985
Cell. 2016 Jan 28;164(3):378-91
pubmed: 26777404
PLoS One. 2016 Mar 10;11(3):e0151335
pubmed: 26964064
Gut Microbes. 2015;6(1):10-23
pubmed: 25531553
Brain Behav Immun. 2018 Jan;67:91-100
pubmed: 28782714
J Neuroinflammation. 2019 Apr 10;16(1):78
pubmed: 30971286
Adv Exp Med Biol. 2020;1238:11-22
pubmed: 32323177
Mucosal Immunol. 2021 May;14(3):555-565
pubmed: 33542493
J Clin Med. 2020 Dec 24;10(1):
pubmed: 33374388
J Leukoc Biol. 2010 Dec;88(6):1271-8
pubmed: 20739616
J Clin Med. 2020 Aug 14;9(8):
pubmed: 32823895
Neuroscience. 2014 Sep 26;277:885-901
pubmed: 25088912
J Neuroinflammation. 2021 Mar 30;18(1):84
pubmed: 33785039
Nat Rev Gastroenterol Hepatol. 2018 Dec;15(12):721-737
pubmed: 30185915
Neurosci Bull. 2021 Jul;37(7):905-920
pubmed: 33761112
Trends Immunol. 2017 Jan;38(1):5-19
pubmed: 27793571
Front Immunol. 2019 Mar 11;10:277
pubmed: 30915065
Gut. 2006 Feb;55(2):182-90
pubmed: 16105890
Gut Microbes. 2015;6(6):398-403
pubmed: 26558327
Pharmacol Rev. 2021 Jul;73(3):968-1000
pubmed: 34117094
Gastroenterology. 2017 Oct;153(4):1068-1081.e7
pubmed: 28711628
Ann Palliat Med. 2021 Mar;10(3):3364-3370
pubmed: 33849121
Elife. 2017 Jun 20;6:
pubmed: 28629511
Prog Neurobiol. 2020 Aug;191:101806
pubmed: 32473843
Cell Rep. 2020 Sep 8;32(10):108100
pubmed: 32905782
Front Immunol. 2019 Feb 28;10:276
pubmed: 30873162