Time-domain signal averaging to improve microparticles detection and enumeration accuracy in a microfluidic impedance cytometer.


Journal

Biotechnology and bioengineering
ISSN: 1097-0290
Titre abrégé: Biotechnol Bioeng
Pays: United States
ID NLM: 7502021

Informations de publication

Date de publication:
11 2021
Historique:
revised: 30 07 2021
received: 01 06 2021
accepted: 01 08 2021
pubmed: 10 8 2021
medline: 4 3 2022
entrez: 9 8 2021
Statut: ppublish

Résumé

Microfluidic impedance cytometry is a powerful system to measure micro and nano-sized particles and is routinely used in point-of-care disease diagnostics and other biomedical applications. However, small objects near a sensor's detection limit are plagued with relatively significant background noise and are difficult to identify for every case. While many data processing techniques can be utilized to reduce noise and improve signal quality, frequently they are still inadequate to push sensor detection limits. Here, we report the first demonstration of a novel signal averaging algorithm effective in noise reduction of microfluidic impedance cytometry data, improving enumeration accuracy, and reducing detection limits. Our device uses a 22 µm tall × 100 µm wide (with 30 µm wide focused aperture) microchannel and gold coplanar microelectrodes that generate an electric field, recording bipolar pulses from polystyrene microparticles flowing through the channel. In addition to outlining a modified moving signal averaging technique theoretically and with a model data set, we also performed a compendium of characterization experiments including variations in flow rate, input voltage, and particle size. Multivariate metrics from each experiment are compared including signal amplitude, pulse width, background noise, and signal-to-noise ratio (SNR). Incorporating our technique resulted in improved SNR and counting accuracy across all experiments conducted, and the limit of detection improved from 5 to 1 µm particles without modifying microchannel dimensions. Succeeding this, we envision implementing our modified moving average technique to develop next-generation microfluidic impedance cytometry devices with an expanded dynamic range and improved enumeration accuracy. This can be exceedingly useful for many biomedical applications, such as infectious disease diagnostics where devices may enumerate larger-scale immune cells alongside sub-micron bacterium in the same sample.

Identifiants

pubmed: 34370302
doi: 10.1002/bit.27910
pmc: PMC8589102
mid: NIHMS1731806
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

4428-4440

Subventions

Organisme : NIGMS NIH HHS
ID : T32 GM135141
Pays : United States

Informations de copyright

© 2021 Wiley Periodicals LLC.

Références

Sensors (Basel). 2019 Aug 27;19(17):
pubmed: 31461956
Biomed Opt Express. 2019 Oct 17;10(11):5755-5775
pubmed: 31799045
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Sep;13(5):e1701
pubmed: 33650293
Electroanalysis. 2007 May 16;19(12):1239-1257
pubmed: 18176631
Physiol Meas. 2011 Mar;32(3):369-84
pubmed: 21330696
Soft Matter. 2016 Dec 21;13(1):37-48
pubmed: 27801463
Philos Trans A Math Phys Eng Sci. 2014 Feb 24;372(2012):20130107
pubmed: 24567474
Thorax. 2011 May;66(5):438-45
pubmed: 20971980
Sci Rep. 2020 Apr 9;10(1):6109
pubmed: 32273525
IEEE Biomed Circuits Syst Conf. 2014 Oct;2014:312-315
pubmed: 26097899
Lab Chip. 2014 Nov 21;14(22):4370-81
pubmed: 25231594
Anal Bioanal Chem. 2021 Jan;413(2):555-564
pubmed: 33156401
Technology (Singap World Sci). 2015 Dec;3(4):201-213
pubmed: 26909365
Heart Rhythm. 2011 Feb;8(2):256-62
pubmed: 20933608
Lab Chip. 2017 Nov 7;17(22):3817-3825
pubmed: 28990602
Lab Chip. 2013 Feb 21;13(4):722-9
pubmed: 23282651
Sci Adv. 2017 Mar 22;3(3):e1501645
pubmed: 28345028
Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2110-5
pubmed: 24449893
Comput Methods Programs Biomed. 2006 Jun;82(3):187-95
pubmed: 16716445
Anal Chem. 2019 Dec 3;91(23):15204-15212
pubmed: 31702127
Phys Rev Lett. 2001 Dec 10;87(24):240601
pubmed: 11736489
Biosens Bioelectron. 2017 Jul 15;93:170-175
pubmed: 27660015
IEEE Trans Biomed Eng. 2021 Jan;68(1):340-349
pubmed: 32746004
Sci Transl Med. 2013 Dec 4;5(214):214ra170
pubmed: 24307694
Micromachines (Basel). 2021 Feb 03;12(2):
pubmed: 33546510
Nat Commun. 2013;4:2001
pubmed: 23756447
Lab Chip. 2017 Mar 29;17(7):1264-1269
pubmed: 28267168
Talanta. 2020 Aug 1;215:120791
pubmed: 32312428
Biomed Microdevices. 2017 Jun;19(2):36
pubmed: 28432532
Sensors (Basel). 2018 Oct 17;18(10):
pubmed: 30336557
Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):820-4
pubmed: 12552089
SLAS Technol. 2017 Jun;22(3):338-347
pubmed: 28520525
PLoS One. 2014 May 02;9(5):e96494
pubmed: 24788712
Nat Commun. 2017 Jul 03;8:15949
pubmed: 28671185
Lab Chip. 2007 Aug;7(8):1034-40
pubmed: 17653346

Auteurs

Brandon K Ashley (BK)

Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.

Umer Hassan (U)

Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
Global Health Institute, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.

Articles similaires

High-throughput Bronchus-on-a-Chip system for modeling the human bronchus.

Akina Mori, Marjolein Vermeer, Lenie J van den Broek et al.
1.00
Humans Bronchi Lab-On-A-Chip Devices Epithelial Cells Goblet Cells
Humans Male Female Middle Aged Neoplasm, Residual
Nanoparticles Needles Polylactic Acid-Polyglycolic Acid Copolymer Polyethylene Glycols Curcumin
Humans Cross-Sectional Studies Male Female Hematocrit

Classifications MeSH