De novo centromere formation on chromosome fragments with an inactive centromere in maize (Zea mays).


Journal

Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology
ISSN: 1573-6849
Titre abrégé: Chromosome Res
Pays: Netherlands
ID NLM: 9313452

Informations de publication

Date de publication:
12 2021
Historique:
received: 24 06 2021
accepted: 05 08 2021
revised: 04 08 2021
pubmed: 19 8 2021
medline: 11 1 2022
entrez: 18 8 2021
Statut: ppublish

Résumé

The B chromosome of maize undergoes nondisjunction at the second pollen mitosis as part of its accumulation mechanism. Previous work identified 9-Bic-1 (9-B inactivated centromere-1), which comprises an epigenetically silenced B chromosome centromere that was translocated to the short arm of chromosome 9(9S). This chromosome is stable in isolation, but when normal B chromosomes are added to the genotype, it will attempt to undergo nondisjunction during the second pollen mitosis and usually fractures the chromosome in 9S. These broken chromosomes allow a test of whether the inactive centromere is reactivated or whether a de novo centromere is formed elsewhere on the chromosome to allow recovery of fragments. Breakpoint determination on the B chromosome and chromosome 9 showed that mini chromosome B1104 has the same breakpoint as 9-Bic-1 in the B centromere region and includes a portion of 9S. CENH3 binding was found on the B centromere region and on 9S, suggesting both centromere reactivation and de novo centromere formation. Another mini chromosome, B496, showed evidence of rearrangement, but it also only showed evidence for a de novo centromere. Other mini chromosome fragments recovered were directly derived from the B chromosome with breakpoints concentrated near the centromeric knob region, which suggests that the B chromosome is broken at a low frequency due to the failure of the sister chromatids to separate at the second pollen mitosis. Our results indicate that both reactivation and de novo centromere formation could occur on fragments derived from the progenitor possessing an inactive centromere.

Identifiants

pubmed: 34406545
doi: 10.1007/s10577-021-09670-5
pii: 10.1007/s10577-021-09670-5
pmc: PMC8710440
doi:

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

313-325

Subventions

Organisme : directorate for biological sciences
ID : IOS-1444514

Informations de copyright

© 2021. The Author(s).

Références

Plant Cell. 2021 May 31;33(4):901-916
pubmed: 33656551
Proc Natl Acad Sci U S A. 1948 Feb;34(2):36-42
pubmed: 16588783
EMBO J. 1996 Oct 1;15(19):5246-55
pubmed: 8895570
Chromosoma. 2010 Oct;119(5):553-63
pubmed: 20499078
Plant Cell. 2009 Jul;21(7):1929-39
pubmed: 19602622
Genetics. 1978 Nov;90(3):613-27
pubmed: 17248872
Brief Bioinform. 2013 Mar;14(2):178-92
pubmed: 22517427
Plant Cell. 2002 Nov;14(11):2825-36
pubmed: 12417704
Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13073-8
pubmed: 9789043
Plant Cell. 2005 May;17(5):1412-23
pubmed: 15805482
Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14210-3
pubmed: 8943086
Genetics. 1984 May;107(1):117-30
pubmed: 17246210
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E987-96
pubmed: 26858403
Biochim Biophys Acta. 2007 May-Jun;1769(5-6):308-15
pubmed: 17320987
Plant Cell. 2020 Oct;32(10):3113-3123
pubmed: 32817254
PLoS Genet. 2009 Nov;5(11):e1000743
pubmed: 19956743
Nature. 2017 Jun 22;546(7659):524-527
pubmed: 28605751
Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3238-43
pubmed: 16492777
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1263-71
pubmed: 25733907
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Front Plant Sci. 2013 Dec 17;4:505
pubmed: 24381575
J Cell Biol. 2008 May 19;181(4):587-94
pubmed: 18474626
Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13554-9
pubmed: 15342909
Plant Cell. 2007 Feb;19(2):524-33
pubmed: 17322406
Chromosome Res. 2011 Aug;19(6):755-61
pubmed: 21947957
Genetics. 1998 Dec;150(4):1683-92
pubmed: 9832542
Chromosoma. 2007 Jun;116(3):275-83
pubmed: 17483978
Cytogenet Genome Res. 2009;124(3-4):228-38
pubmed: 19556776
Chromosoma. 2000;109(5):308-17
pubmed: 11007489
Chromosome Res. 2012 May;20(4):395-402
pubmed: 22552914
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Genetics. 1947 Jul;32(4):391-409
pubmed: 17247252
Elife. 2014 Jul 15;3:e02137
pubmed: 25027692
Trends Genet. 2012 May;28(5):204-12
pubmed: 22445183
Plant J. 2012 Sep;71(5):800-9
pubmed: 22519817
Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9842-7
pubmed: 15998740
Chromosoma. 2005 Feb;113(7):337-49
pubmed: 15586285
Genetics. 1981 Feb;97(2):379-89
pubmed: 17249076
Proc Natl Acad Sci U S A. 1939 Aug;25(8):405-16
pubmed: 16577924
Genes (Basel). 2019 Mar 16;10(3):
pubmed: 30884847
Genetics. 1993 Oct;135(2):589-97
pubmed: 8244015
Genome. 2011 Mar;54(3):184-95
pubmed: 21423281
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6033-6
pubmed: 23530217
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
J Cell Biol. 2010 Jun 14;189(6):937-43
pubmed: 20548100
Mol Plant. 2018 Mar 5;11(3):398-406
pubmed: 29277426
Plant Cell. 2004 Apr;16(4):794-803
pubmed: 15064365
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23):
pubmed: 34088847

Auteurs

Ryan N Douglas (RN)

Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.

Hua Yang (H)

Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.

Bing Zhang (B)

State Key Lab of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.

Chen Chen (C)

Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA.

Fangpu Han (F)

State Key Lab of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.

Jianlin Cheng (J)

Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA.

James A Birchler (JA)

Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA. birchlerj@missouri.edu.

Articles similaires

Zea mays Triticum China Seasons Crops, Agricultural
Schizosaccharomyces Meiosis Schizosaccharomyces pombe Proteins Mitosis Epigenesis, Genetic
Zea mays Ozone Mycotoxins Food Safety Food Contamination

Fine mapping of a major QTL, qECQ8, for rice taste quality.

Shan Zhu, Guoping Tang, Zhou Yang et al.
1.00
Oryza Quantitative Trait Loci Taste Chromosome Mapping Phenotype

Classifications MeSH