A Polynomial-Time Algorithm for Minimizing the Deep Coalescence Cost for Level-1 Species Networks.


Journal

IEEE/ACM transactions on computational biology and bioinformatics
ISSN: 1557-9964
Titre abrégé: IEEE/ACM Trans Comput Biol Bioinform
Pays: United States
ID NLM: 101196755

Informations de publication

Date de publication:
Historique:
pubmed: 19 8 2021
medline: 13 10 2022
entrez: 18 8 2021
Statut: ppublish

Résumé

Phylogenetic analyses commonly assume that the species history can be represented as a tree. However, in the presence of hybridization, the species history is more accurately captured as a network. Despite several advances in modeling phylogenetic networks, there is no known polynomial-time algorithm for parsimoniously reconciling gene trees with species networks while accounting for incomplete lineage sorting. To address this issue, we present a polynomial-time algorithm for the case of level-1 networks, in which no hybrid species is the direct ancestor of another hybrid species. This work enables more efficient reconciliation of gene trees with species networks, which in turn, enables more efficient reconstruction of species networks.

Identifiants

pubmed: 34406946
doi: 10.1109/TCBB.2021.3105922
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

2642-2653

Auteurs

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Classifications MeSH