A Duet Between Histamine and Oleoylethanolamide in the Control of Homeostatic and Cognitive Processes.
Appetite
Ketogenesis
Memory
Journal
Current topics in behavioral neurosciences
ISSN: 1866-3370
Titre abrégé: Curr Top Behav Neurosci
Pays: Germany
ID NLM: 101535383
Informations de publication
Date de publication:
2022
2022
Historique:
pubmed:
20
8
2021
medline:
1
10
2022
entrez:
19
8
2021
Statut:
ppublish
Résumé
In ballet, a pas de deux (in French it means "step of two") is a duet in which the two dancers perform ballet steps together. The suite of dances shares a common theme of partnership. How could we better describe the fine interplay between oleoylethanolamide (OEA) and histamine, two phylogenetically ancient molecules controlling metabolic, homeostatic and cognitive processes? Contrary to the pas de deux though, the two dancers presumably never embrace each other as a dancing pair but execute their "virtuoso solo" constantly exchanging interoceptive messages presumably via vagal afferents, the blood stream, the neuroenteric system. With one exception, which is in the control of liver ketogenesis, as in hepatocytes, OEA biosynthesis strictly depends on the activation of histaminergic H
Identifiants
pubmed: 34410679
doi: 10.1007/7854_2021_236
doi:
Substances chimiques
Endocannabinoids
0
Ketone Bodies
0
Oleic Acids
0
oleoyl ethanolamine
0
oleoylethanolamide
1HI5J9N8E6
Ethanolamine
5KV86114PT
Histamine
820484N8I3
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
389-410Informations de copyright
© 2021. The Author(s), under exclusive license to Springer Nature Switzerland AG.
Références
Ahern GP (2003) Activation of TRPV1 by the satiety factor oleoylethanolamide. J Biol Chem 278:30429–30434
pubmed: 12761211
doi: 10.1074/jbc.M305051200
Anaclet C, Parmentier R, Ouk K, Guidon G, Buda C, Sastre JP, Akaoka H, Sergeeva OA, Yanagisawa M, Ohtsu H, Franco P, Haas HL, Lin JS (2009) Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. J Neurosci 29:14423–14438
pubmed: 19923277
pmcid: 2802289
doi: 10.1523/JNEUROSCI.2604-09.2009
Antón M, Rodríguez-González A, Ballesta A, González N, Del Pozo A, de Fonseca FR, Gómez-Lus ML, Leza JC, García-Bueno B, Caso JR, Orio L (2018) Alcohol binge disrupts the rat intestinal barrier: the partial protective role of oleoylethanolamide. Br J Pharmacol 175:4464–4479
pubmed: 30248186
pmcid: 6255955
doi: 10.1111/bph.14501
Astarita G, Rourke BC, Andersen JB, Fu J, Kim JH, Bennett AF, Hicks JW, Piomelli D (2006) Postprandial increase of oleoylethanolamide mobilization in small intestine of the Burmese python (Python molurus). Am J Physiol Regul Integr Comp Physiol 290:R1407–R1412
pubmed: 16373434
doi: 10.1152/ajpregu.00664.2005
Bahi A, Schwed JS, Walter M, Stark H, Sadek B (2014) Anxiolytic and antidepressant-like activities of the novel and potent non-imidazole histamine H
pubmed: 24920886
pmcid: 4044994
Baldan LC, Williams KA, Gallezot JD, Pogorelov V, Rapanelli M, Crowley M, Anderson GM, Loring E, Gorczyca R, Billingslea E, Wasylink S, Panza KE, Ercan-Sencicek AG, Krusong K, Leventhal BL, Ohtsu H, Bloch MH, Hughes ZA, Krystal JH, Mayes L, de Araujo I, Ding YS, State MW, Pittenger C (2014) Histidine decarboxylase deficiency causes tourette syndrome: parallel findings in humans and mice. Neuron 81:77–90
pubmed: 24411733
pmcid: 3894588
doi: 10.1016/j.neuron.2013.10.052
Bárbara A, Aceves J, Arias-Montaño J-A (2002) Histamine H1 receptors in rat dorsal raphe nucleus: pharmacological characterisation and linking to increased neuronal activity. Brain Res 954:247–255
pubmed: 12414108
doi: 10.1016/S0006-8993(02)03352-8
Benetti F, Furini CR, de Carvalho MJ, Provensi G, Passani MB, Baldi E, Bucherelli C, Munari L, Izquierdo I, Blandina P (2015) Histamine in the basolateral amygdala promotes inhibitory avoidance learning independently of hippocampus. Proc Natl Acad Sci U S A 112:E2536–E2542
pubmed: 25918368
pmcid: 4434720
doi: 10.1073/pnas.1506109112
Blandina P, Munari L, Provensi G, Passani MB (2012) Histamine neurons in the tuberomamillary nucleus: a whole center or distinct subpopulations? Front Syst Neurosci 6:33
pubmed: 22586376
pmcid: 3343474
doi: 10.3389/fnsys.2012.00033
Brown RE, Sergeeva OA, Eriksson KS, Haas HL (2002) Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J Neurosci 22:8850
pubmed: 12388591
pmcid: 6757703
doi: 10.1523/JNEUROSCI.22-20-08850.2002
Brown JD, Karimian Azari E, Ayala JE (2017) Oleoylethanolamide: a fat ally in the fight against obesity. Physiol Behav 176:50–58
pubmed: 28254531
doi: 10.1016/j.physbeh.2017.02.034
Bugajski J, Janusz Z (1981) Lipolytic responses induced by intracerebroventricular administration of histamine in the rat. Agents Actions 11:147–150
pubmed: 6113741
doi: 10.1007/BF01991485
Campolongo P, Roozendaal B, Trezza V, Cuomo V, Astarita G, Fu J, McGaugh JL, Piomelli D (2009) Fat-induced satiety factor oleoylethanolamide enhances memory consolidation. Proc Natl Acad Sci U S A 106:8027–8031
pubmed: 19416833
pmcid: 2683095
doi: 10.1073/pnas.0903038106
Capasso R, Matias I, Lutz B, Borrelli F, Capasso F, Marsicano G, Mascolo N, Petrosino S, Monory K, Valenti M, Di Marzo V, Izzo AA (2005) Fatty acid amide hydrolase controls mouse intestinal motility in vivo. Gastroenterology 129:941–951
pubmed: 16143133
doi: 10.1053/j.gastro.2005.06.018
Casarrubea M, Jonsson GK, Faulisi F, Sorbera F, Di Giovanni G, Benigno A, Crescimanno G, Magnusson MS (2015) T-pattern analysis for the study of temporal structure of animal and human behavior: a comprehensive review. J Neurosci Methods 239:34–46
pubmed: 25280983
doi: 10.1016/j.jneumeth.2014.09.024
Clayton EC, Williams CL (2000) Adrenergic activation of the nucleus tractus solitarius potentiates amygdala norepinephrine release and enhances retention performance in emotionally arousing and spatial memory tasks. Behav Brain Res 112(1–2):151–158
pubmed: 10862946
doi: 10.1016/S0166-4328(00)00178-9
Clineschmidt BV, Lotti VJ (1973) Histamine: intraventricular injection suppresses ingestive behavior of the cat. Arch Int Pharmacodyn Ther 206:288–298
pubmed: 4778620
Contreras M, Riveros ME, Quispe M, Sánchez C, Perdomo G, Torrealba F, Valdés JL (2016) The histaminergic tuberomamillary nucleus is involved in appetite for sex, water and amphetamine. PLoS One 11:e0148484
pubmed: 26845170
pmcid: 4743640
doi: 10.1371/journal.pone.0148484
Costa A, Cristiano C, Cassano T, Gallelli CA, Gaetani S, Ghelardini C, Blandina P, Calignano A, Passani MB, Provensi G (2018) Histamine-deficient mice do not respond to the antidepressant-like effects of oleoylethanolamide. Neuropharmacology 135:234–241
pubmed: 29596898
doi: 10.1016/j.neuropharm.2018.03.033
da Silveira CK, Furini CR, Benetti F, Monteiro SC, Izquierdo I (2013) The role of histamine receptors in the consolidation of object recognition memory. Neurobiol Learn Mem 103:64–71
pubmed: 23583502
doi: 10.1016/j.nlm.2013.04.001
de Almeida MA, Izquierdo I (1986) Memory facilitation by histamine. Arch Int Pharmacodyn Ther 283:193–198
pubmed: 3789882
De Luca R, Mazur K, Kernder A, Suvorava T, Kojda G, Haas HL, Sergeeva OA (2018) Mechanisms of N-oleoyldopamine activation of central histaminergic neurons. Neuropharmacology 143:327–338
pubmed: 30219501
doi: 10.1016/j.neuropharm.2018.09.006
Di Paola M, Bonechi E, Provensi G, Costa A, Clarke G, Ballerini C, De Filippo C, Passani MB (2018) Oleoylethanolamide treatment affects gut microbiota composition and the expression of intestinal cytokines in Peyer's patches of mice. Sci Rep 8:14881
pubmed: 30291258
pmcid: 6173739
doi: 10.1038/s41598-018-32925-x
Dlugos A, Childs E, Stuhr KL, Hillard CJ, de Wit H (2012) Acute stress increases circulating anandamide and other N-acylethanolamines in healthy humans. Neuropsychopharmacology 37:2416–2427
pubmed: 22763622
pmcid: 3442338
doi: 10.1038/npp.2012.100
Dubois V, Eeckhoute J, Lefebvre P, Staels B (2017) Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J Clin Invest 127:1202–1214
pubmed: 28368286
pmcid: 5373878
doi: 10.1172/JCI88894
Eriksson KS, Sergeeva O, Brown RE, Haas HL (2001) Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci Off J Soc Neurosci 21:9273–9279
doi: 10.1523/JNEUROSCI.21-23-09273.2001
Fabbri R, Furini CRG, Passani MB, Provensi G, Baldi E, Bucherelli C, Izquierdo I, Myskiw JD, Blandina P (2016) Memory retrieval of inhibitory avoidance requires histamine H-1 receptor activation in the hippocampus. Proc Natl Acad Sci U S A 113:E2714–E2720
pubmed: 27118833
pmcid: 4868453
doi: 10.1073/pnas.1604841113
Femenía T, Magara S, DuPont CM, Lindskog M (2015) Hippocampal-dependent antidepressant action of the H3 receptor antagonist Clobenpropit in a rat model of depression. Int J Neuropsychopharmacol 18
Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez De Fonseca F, Rosengarth A, Luecke H, Di Giacomo B, Tarzia G, Piomelli D (2003) Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425:90–93
pubmed: 12955147
doi: 10.1038/nature01921
Fu J, Astarita G, Gaetani S, Kim J, Cravatt BF, Mackie K, Piomelli D (2007) Food intake regulates oleoylethanolamide formation and degradation in the proximal small intestine. J Biol Chem 282:1518–1528
pubmed: 17121838
doi: 10.1074/jbc.M607809200
Fujita A, Bonnavion P, Wilson MH, Mickelsen LE, Bloit J, de Lecea L, Jackson AC (2017) Hypothalamic Tuberomammillary nucleus neurons: electrophysiological diversity and essential role in arousal stability. J Neurosci 37:9574–9592
pubmed: 28874450
pmcid: 5618271
doi: 10.1523/JNEUROSCI.0580-17.2017
Gaetani S, Kaye WH, Cuomo V, Piomelli D (2008) Role of endocannabinoids and their analogues in obesity and eating disorders. Eat Weight Disord 13:e42–e48
pubmed: 19011363
Gaetani S, Fu J, Cassano T, Dipasquale P, Romano A, Righetti L, Cianci S, Laconca L, Giannini E, Scaccianoce S, Mairesse J, Cuomo V, Piomelli D (2010) The fat-induced satiety factor oleoylethanolamide suppresses feeding through central release of oxytocin. J Neurosci 30:8096–8101
pubmed: 20554860
pmcid: 2900249
doi: 10.1523/JNEUROSCI.0036-10.2010
Gao Z, Hurst WJ, Czechtizky W, Hall D, Moindrot N, Nagorny R, Pichat P, Stefany D, Hendrix JA, George PG (2013) Identification and profiling of 3,5-dimethyl-isoxazole-4-carboxylic acid [2-methyl-4-((2S,3'S)-2-methyl-[1,3′]bipyrrolidinyl-1′-yl)phenyl] amide as histamine H(3) receptor antagonist for the treatment of depression. Bioorg Med Chem Lett 23:6269–6273
pubmed: 24139584
doi: 10.1016/j.bmcl.2013.09.081
Garrido Zinn C, Clairis N, Silva Cavalcante LE, Furini CR, de Carvalho MJ, Izquierdo I (2016) Major neurotransmitter systems in dorsal hippocampus and basolateral amygdala control social recognition memory. Proc Natl Acad Sci U S A 113:E4914–E4919
pubmed: 27482097
pmcid: 4995962
doi: 10.1073/pnas.1609883113
Gass P, Riva MA (2007) CREB, neurogenesis and depression. Bioessays 29:957–961
pubmed: 17876779
doi: 10.1002/bies.20658
Hankir MK, Seyfried F, Hintschich CA, Diep TA, Kleberg K, Kranz M, Deuther-Conrad W, Tellez LA, Rullmann M, Patt M, Teichert J, Hesse S, Sabri O, Brust P, Hansen HS, de Araujo IE, Krügel U, Fenske WK (2017) Gastric bypass surgery recruits a gut PPAR-α-striatal D1R pathway to reduce fat appetite in obese rats. Cell Metab 25:335–344
pubmed: 28065827
doi: 10.1016/j.cmet.2016.12.006
Hansen HS (2010) Palmitoylethanolamide and other anandamide congeners. Proposed role in the diseased brain. Exp Neurol 224:48–55
pubmed: 20353771
doi: 10.1016/j.expneurol.2010.03.022
Hauer D, Kaufmann I, Strewe C, Briegel I, Campolongo P, Schelling G (2014) The role of glucocorticoids, catecholamines and endocannabinoids in the development of traumatic memories and posttraumatic stress symptoms in survivors of critical illness. Neurobiol Learn Mem 112:68–74
pubmed: 24125890
doi: 10.1016/j.nlm.2013.10.003
Haxhiu MA, Tolentino-Silva F, Pete G, Kc P, Mack SO (2001) Monoaminergic neurons, chemosensation and arousal. Respir Physiol 129:191–209
pubmed: 11738654
doi: 10.1016/S0034-5687(01)00290-0
Hong ST, Bang S, Paik D, Kang J, Hwang S, Jeon K, Chun B, Hyun S, Lee Y, Kim J (2006) Histamine and its receptors modulate temperature-preference behaviors in drosophila. J Neurosci 26:7245–7256
pubmed: 16822982
pmcid: 6673956
doi: 10.1523/JNEUROSCI.5426-05.2006
Igarashi M, DiPatrizio NV, Narayanaswami V, Piomelli D (2015) Feeding-induced oleoylethanolamide mobilization is disrupted in the gut of diet-induced obese rodents. Biochim Biophys Acta 1851:1218–1226
pubmed: 26024927
pmcid: 4516666
doi: 10.1016/j.bbalip.2015.05.006
Izquierdo I, Furini CRG, Myskiw JC (2016) FEAR MEMORY. Physiol Rev 96:695–750
pubmed: 26983799
doi: 10.1152/physrev.00018.2015
Izzo AA, Piscitelli F, Capasso R, Marini P, Cristino L, Petrosino S, Di Marzo V (2010) Basal and fasting/refeeding-regulated tissue levels of endogenous PPAR-alpha ligands in Zucker rats. Obesity (Silver Spring) 18:55–62
doi: 10.1038/oby.2009.186
Jin P, Yu HL, Tian-Lan ZF, Quan ZS (2015) Antidepressant-like effects of oleoylethanolamide in a mouse model of chronic unpredictable mild stress. Pharmacol Biochem Behav 133:146–154
pubmed: 25864425
doi: 10.1016/j.pbb.2015.04.001
Jung KM, Lin L, Piomelli D (2021) The endocannabinoid system in the adipose organ. Rev Endocr Metab Disord. https://doi.org/10.1007/s11154-020-09623-z
Kano M, Fukudo S, Tashiro A, Utsumi A, Tamura D, Itoh M, Iwata R, Tashiro M, Mochizuki H, Funaki Y, Kato M, Hongo M, Yanai K (2004) Decreased histamine H1 receptor binding in the brain of depressed patients. Eur J Neurosci 20:803–810
pubmed: 15255990
doi: 10.1111/j.1460-9568.2004.03540.x
Karwad MA, Macpherson T, Wang B, Theophilidou E, Sarmad S, Barrett DA, Larvin M, Wright KL, Lund JN, O'Sullivan SE (2017) Oleoylethanolamine and palmitoylethanolamine modulate intestinal permeability in vitro via TRPV1 and PPARα. FASEB J 31:469–481
pubmed: 27623929
doi: 10.1096/fj.201500132
Kersten S (2014) Integrated physiology and systems biology of PPARα. Mol Metab 3:354–371
pubmed: 24944896
pmcid: 4060217
doi: 10.1016/j.molmet.2014.02.002
Kim SF, Huang AS, Snowman AM, Teuscher C, Snyder SH (2007) From the cover: antipsychotic drug-induced weight gain mediated by histamine H1 receptor-linked activation of hypothalamic AMP-kinase. Proc Natl Acad Sci U S A 104:3456–3459
pubmed: 17360666
pmcid: 1805549
doi: 10.1073/pnas.0611417104
Koethe D, Schreiber D, Giuffrida A, Mauss C, Faulhaber J, Heydenreich B, Hellmich M, Graf R, Klosterkötter J, Piomelli D, Leweke FM (2009) Sleep deprivation increases oleoylethanolamide in human cerebrospinal fluid. J Neural Transm (Vienna) 116:301–305
doi: 10.1007/s00702-008-0169-6
Kroeze WK, Hufeisen SJ, Popadak BA, Renock SM, Steinberg S, Ernsberger P, Jayathilake K, Meltzer HY, Roth BL (2003) H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology 28:519–526
pubmed: 12629531
doi: 10.1038/sj.npp.1300027
Lama A, Provensi G, Amoriello R, Pirozzi C, Rani B, Mollica MP, Raso GM, Ballerini C, Meli R, Passani MB (2020) The anti-inflammatory and immune-modulatory effects of OEA limit DSS-induced colitis in mice. Biomed Pharmacother 129:110368
pubmed: 32559625
doi: 10.1016/j.biopha.2020.110368
Lecklin A, Etu-Seppälä P, Stark H, Tuomisto L (1998) Effects of intracerebroventricularly infused histamine and selective H1, H2 and H3 agonists on food and water intake and urine flow in Wistar rats. Brain Res 793:279–288
pubmed: 9630675
doi: 10.1016/S0006-8993(98)00186-3
Leurs R, Smit MJ, Timmerman H (1995) Molecular pharmacological aspects of histamine receptors. Pharmacol Ther 66:413–463
pubmed: 7494855
doi: 10.1016/0163-7258(95)00006-3
Lindskog M (2017) Histamine receptors in the cross-talk between periphery and brain. Int J Neuropsychopharmacol 20:400–402
pubmed: 28340169
pmcid: 5417051
doi: 10.1093/ijnp/pyx018
Magrani J, de Silva CE, Athanazio R, Improta L, Fregoneze JB (2006) Involvement of central H1 and H2 receptors in water intake induced by hyperosmolarity, hypovolemia and central cholinergic stimulation. Physiol Behav 89:241–249
pubmed: 16844153
doi: 10.1016/j.physbeh.2006.06.004
Masaki T, Yoshimatsu H (2006) The hypothalamic H1 receptor: a novel therapeutic target for disrupting diurnal feeding rhythm and obesity. Trends Pharmacol Sci 27:279–284
pubmed: 16584790
doi: 10.1016/j.tips.2006.03.008
Masaki T, Yoshimatsu H, Chiba S, Watanabe T, Sakata T (2001) Targeted disruption of histamine H1-receptor attenuates regulatory effects of leptin on feeding, adiposity, and UCP family in mice. Diabetes 50:385–391
pubmed: 11272151
doi: 10.2337/diabetes.50.2.385
Melis M, Pillolla G, Luchicchi A, Muntoni AL, Yasar S, Goldberg SR, Pistis M (2008) Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors. J Neurosci 28:13985–13994
pubmed: 19091987
pmcid: 3169176
doi: 10.1523/JNEUROSCI.3221-08.2008
Menard C, Pfau ML, Hodes GE, Kana V, Wang VX, Bouchard S, Takahashi A, Flanigan ME, Aleyasin H, LeClair KB, Janssen WG, Labonté B, Parise EM, Lorsch ZS, Golden SA, Heshmati M, Tamminga C, Turecki G, Campbell M, Fayad ZA, Tang CY, Merad M, Russo SJ (2017) Social stress induces neurovascular pathology promoting depression. Nat Neurosci 20:1752–1760
pubmed: 29184215
pmcid: 5726568
doi: 10.1038/s41593-017-0010-3
Miklós IH, Kovács KJ (2003) Functional heterogeneity of the responses of histaminergic neuron subpopulations to various stress challenges. Eur J Neurosci 18:3069–3079
pubmed: 14656302
doi: 10.1111/j.1460-9568.2003.03033.x
Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferré P, Birnbaum MJ, Stuck BJ, Kahn BB (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428:569–574
pubmed: 15058305
doi: 10.1038/nature02440
Misto A, Provensi G, Vozella V, Passani MB, Piomelli D (2019) Mast cell-derived histamine regulates liver Ketogenesis via Oleoylethanolamide signaling. Cell Metab 29:91–102
pubmed: 30318340
doi: 10.1016/j.cmet.2018.09.014
Montecucco F, Lenglet S, Quercioli A, Burger F, Thomas A, Lauer E, da Silva AR, Mach F, Vuilleumier N, Bobbioni-Harsch E, Golay A, Schindler TH, Pataky Z (2015) Gastric bypass in morbid obese patients is associated with reduction in adipose tissue inflammation via N-oleoylethanolamide (OEA)-mediated pathways. Thromb Haemost 113:838–850
pubmed: 25413674
doi: 10.1160/TH14-06-0506
Munari L, Provensi G, Passani MB, Blandina P (2013) Selective brain region activation by histamine H
pubmed: 23380305
doi: 10.1016/j.neuropharm.2013.01.021
Munari L, Provensi G, Passani MB, Galeotti N, Cassano T, Benetti F, Corradetti R, Blandina P (2015) Brain histamine is crucial for selective serotonin reuptake Inhibitors' behavioral and neurochemical effects. Int J Neuropsychopharmacol 18:5
doi: 10.1093/ijnp/pyv045
Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G, Jackson HC, Procter MJ, Rasamison CM, Tang-Christensen M, Widdowson PS, Williams GM, Reynet C (2006) Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 3:167–175
pubmed: 16517404
doi: 10.1016/j.cmet.2006.02.004
Pérez-García C, Morales L, Cano MV, Sancho I, Alguacil LF (1999) Effects of histamine H3 receptor ligands in experimental models of anxiety and depression. Psychopharmacology (Berl) 142:215–220
doi: 10.1007/s002130050882
Piomelli D (2013) A fatty gut feeling. Trends Endocrinol Metab 24:332–341
pubmed: 23567058
pmcid: 3778443
doi: 10.1016/j.tem.2013.03.001
Pittenger C (2020) The histidine decarboxylase model of tic pathophysiology: a new focus on the histamine H. Br J Pharmacol 177:570–579
pubmed: 30714121
doi: 10.1111/bph.14606
Plaza-Zabala A, Berrendero F, Suarez J, Bermudez-Silva FJ, Fernandez-Espejo E, Serrano A, Pavon FJ, Parsons LH, De Fonseca FR, Maldonado R, Robledo P (2010) Effects of the endogenous PPAR-alpha agonist, oleoylethanolamide on MDMA-induced cognitive deficits in mice. Synapse 64:379–389
pubmed: 20029832
doi: 10.1002/syn.20733
Pontis S, Ribeiro A, Sasso O, Piomelli D (2016) Macrophage-derived lipid agonists of PPAR-α as intrinsic controllers of inflammation. Crit Rev Biochem Mol Biol 51:7–14
pubmed: 26585314
doi: 10.3109/10409238.2015.1092944
Provensi G, Coccurello R, Umehara H, Munari L, Giacovazzo G, Galeotti N, Nosi D, Gaetani S, Romano A, Moles A, Blandina P, Passani MB (2014) Satiety factor oleoylethanolamide recruits the brain histaminergic system to inhibit food intake. Proc Natl Acad Sci U S A 111:11527–11532
pubmed: 25049422
pmcid: 4128140
doi: 10.1073/pnas.1322016111
Provensi G, Blandina P, Passani MB (2016) The histaminergic system as a target for the prevention of obesity and metabolic syndrome. Neuropharmacology 106:3–12
pubmed: 26164344
doi: 10.1016/j.neuropharm.2015.07.002
Provensi G, Fabbri R, Munari L, Costa A, Baldi E, Bucherelli C, Blandina P, Passani MB (2017) Histaminergic neurotransmission as a gateway for the cognitive effect of Oleoylethanolamide in contextual fear conditioning. Int J Neuropsychopharmacol 20:392–399
pubmed: 28339575
pmcid: 5417054
doi: 10.1093/ijnp/pyw110
Provensi G, Costa A, Izquierdo I, Blandina P, Passani MB (2020a) Brain histamine modulates recognition memory: possible implications in major cognitive disorders. Br J Pharmacol 177:539–556
pubmed: 30129226
doi: 10.1111/bph.14478
Provensi G, Passani MB, Costa A, Izquierdo I, Blandina P (2020b) Neuronal histamine and the memory of emotionally salient events. Br J Pharmacol 177:557–569
pubmed: 30110713
doi: 10.1111/bph.14476
Rani B, Santangelo A, Romano A, Koczwara JB, Friuli M, Provensi G, Blandina P, Casarrubea M, Gaetani S, Passani MB, Costa A (2021a) Brain histamine and oleoylethanolamide restore behavioral deficits induced by chronic social defeat stress in mice. Neurobiol Stress 14:100317
pubmed: 33869681
pmcid: 8039856
doi: 10.1016/j.ynstr.2021.100317
Rani B, Silva-Marques B, Leurs R, Passani MB, Blandina P, Provensi G (2021b) Short- and long-term social recognition memory are differentially modulated by neuronal histamine. Biomolecules 11:555
pubmed: 33918940
pmcid: 8069616
doi: 10.3390/biom11040555
Ratliff JC, Barber JA, Palmese LB, Reutenauer EL, Tek C (2010) Association of prescription H1 antihistamine use with obesity: results from the National Health and Nutrition Examination Survey. Obesity (Silver Spring) 18:2398–2400
doi: 10.1038/oby.2010.176
Raveendran VV, Kassel KM, Smith DD, Luyendyk JP, Williams KJ, Cherian R, Reed GA, Flynn CA, Csanaky IL, Lickteig AL, Pratt-Hyatt MJ, Klaassen CD, Dileepan KN (2014) H1-antihistamines exacerbate high-fat diet-induced hepatic steatosis in wild-type but not in apolipoprotein E knockout mice. Am J Physiol Gastrointest Liver Physiol 307:G219–G228
pubmed: 24852568
pmcid: 4101675
doi: 10.1152/ajpgi.00027.2014
Ren T, Liu J, Ge Y, Zhuo R, Peng L, Liu F, Jin X, Yang L (2019) Chronic oleoylethanolamide treatment attenuates diabetes-induced mice encephalopathy by triggering peroxisome proliferator-activated receptor alpha in the hippocampus. Neurochem Int 129:104501
pubmed: 31299417
doi: 10.1016/j.neuint.2019.104501
Ren T, Ma A, Zhuo R, Zhang H, Peng L, Jin X, Yao E, Yang L (2020) Oleoylethanolamide increases glycogen synthesis and inhibits hepatic gluconeogenesis via the LKB1/AMPK pathway in type 2 diabetic model. J Pharmacol Exp Ther 373:81–91
pubmed: 32024803
doi: 10.1124/jpet.119.262675
Rodríguez de Fonseca F, Navarro M, Gómez R, Escuredo L, Nava F, Fu J, Murillo-Rodríguez E, Giuffrida A, LoVerme J, Gaetani S, Kathuria S, Gall C, Piomelli D (2001) An anorexic lipid mediator regulated by feeding. Nature 414:209–212
pubmed: 11700558
doi: 10.1038/35102582
Romano A, Cassano T, Tempesta B, Cianci S, Dipasquale P, Coccurello R, Cuomo V, Gaetani S (2013) The satiety signal oleoylethanolamide stimulates oxytocin neurosecretion from rat hypothalamic neurons. Peptides 49:21–26
pubmed: 23959001
doi: 10.1016/j.peptides.2013.08.006
Romano A, Tempesta B, Provensi G, Passani MB, Gaetani S (2015) Central mechanisms mediating the hypophagic effects of oleoylethanolamide and N-acylphosphatidylethanolamines: different lipid signals? Front Pharmacol 6:137
pubmed: 26167152
pmcid: 4481858
doi: 10.3389/fphar.2015.00137
Romano A, Micioni Di Bonaventura MV, Gallelli CA, Koczwara JB, Smeets D, Giusepponi ME, De Ceglia M, Friuli M, Micioni Di Bonaventura E, Scuderi C, Vitalone A, Tramutola A, Altieri F, Lutz TA, Giudetti AM, Cassano T, Cifani C, Gaetani S (2020) Oleoylethanolamide decreases frustration stress-induced binge-like eating in female rats: a novel potential treatment for binge eating disorder. Neuropsychopharmacology 45:1931–1941
pubmed: 32353860
pmcid: 7609309
doi: 10.1038/s41386-020-0686-z
Romero-Sanchiz P, Nogueira-Arjona R, Pastor A, Araos P, Serrano A, Boronat A, Garcia-Marchena N, Mayoral F, Bordallo A, Alen F, Suárez J, de la Torre R, Pavón FJ, Rodríguez de Fonseca F (2019) Plasma concentrations of oleoylethanolamide in a primary care sample of depressed patients are increased in those treated with selective serotonin reuptake inhibitor-type antidepressants. Neuropharmacology 149:212–220
pubmed: 30822499
doi: 10.1016/j.neuropharm.2019.02.026
Rosa J, Myskiw JC, Furini CR, Sapiras GG, Izquierdo I (2014) Fear extinction can be made state-dependent on peripheral epinephrine: role of norepinephrine in the nucleus tractus solitarius. Neurobiol Learn Mem 113:55–61
pubmed: 24161888
doi: 10.1016/j.nlm.2013.09.018
Santangelo A, Provensi G, Costa A, Blandina P, Ricca V, Crescimanno G, Casarrubea M, Passani MB (2017) Brain histamine depletion enhances the behavioural sequences complexity of mice tested in the open-field: partial reversal effect of the dopamine D2/D3 antagonist sulpiride. Neuropharmacology 113:533–542
pubmed: 27833003
doi: 10.1016/j.neuropharm.2016.11.007
Schaefer C, Enning F, Mueller JK, Bumb JM, Rohleder C, Odorfer TM, Klosterkötter J, Hellmich M, Koethe D, Schmahl C, Bohus M, Leweke FM (2014) Fatty acid ethanolamide levels are altered in borderline personality and complex posttraumatic stress disorders. Eur Arch Psychiatry Clin Neurosci 264:459–463
pubmed: 24253425
doi: 10.1007/s00406-013-0470-8
Schmidt ME, Liebowitz MR, Stein MB, Grunfeld J, Van Hove I, Simmons WK, Van Der Ark P, Palmer JA, Saad ZS, Pemberton DJ, Van Nueten L, Drevets WC (2021) The effects of inhibition of fatty acid amide hydrolase (FAAH) by JNJ-42165279 in social anxiety disorder: a double-blind, randomized, placebo-controlled proof-of-concept study. Neuropsychopharmacology 46:1004–1010
pubmed: 33070154
doi: 10.1038/s41386-020-00888-1
Schwartz GJ, Fu J, Astarita G, Li X, Gaetani S, Campolongo P, Cuomo V, Piomelli D (2008) The lipid messenger OEA links dietary fat intake to satiety. Cell Metab 8:281–288
pubmed: 18840358
pmcid: 2572640
doi: 10.1016/j.cmet.2008.08.005
Tabarean IV (2016) Histamine receptor signaling in energy homeostasis. Neuropharmacology 106:13–19
pubmed: 26107117
doi: 10.1016/j.neuropharm.2015.04.011
Tabarean IV, Sanchez-Alavez M, Sethi J (2012) Mechanism of H
pubmed: 22366077
pmcid: 3372691
doi: 10.1016/j.neuropharm.2012.02.006
Takahashi K, Lin JS, Sakai K (2006) Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci 26:10292–10298
pubmed: 17021184
pmcid: 6674640
doi: 10.1523/JNEUROSCI.2341-06.2006
Taylor KM, Snyder SH (1971) Histamine in rat brain: sensitive assay of endogenous levels, formation in vivo and lowering by inhibitors of histidine decarboxylase. J Pharmacol Exp Ther 179:619–633
pubmed: 5138032
Tellez LA, Medina S, Han W, Ferreira JG, Licona-Limón P, Ren X, Lam TT, Schwartz GJ, de Araujo IE (2013) A gut lipid messenger links excess dietary fat to dopamine deficiency. Science 341:800–802
pubmed: 23950538
doi: 10.1126/science.1239275
Torrealba F, Riveros ME, Contreras M, Valdes JL (2012) Histamine and motivation. Front Syst Neurosci 6:51
pubmed: 22783171
pmcid: 3389384
doi: 10.3389/fnsys.2012.00051
Tutunchi H, Ostadrahimi A, Saghafi-Asl M, Hosseinzadeh-Attar MJ, Shakeri A, Asghari-Jafarabadi M, Roshanravan N, Farrin N, Naemi M, Hasankhani M (2020) Oleoylethanolamide supplementation in obese patients newly diagnosed with non-alcoholic fatty liver disease: effects on metabolic parameters, anthropometric indices, and expression of PPAR-α, UCP1, and UCP2 genes. Pharmacol Res 156:104770
pubmed: 32217148
doi: 10.1016/j.phrs.2020.104770
Tutunchi H, Ostadrahimi A, Saghafi-Asl M, Roshanravan N, Shakeri-Bavil A, Asghari-Jafarabadi M, Farrin N, Mobasseri M (2021) Expression of NF-κB, IL-6, and IL-10 genes, body composition, and hepatic fibrosis in obese patients with NAFLD-combined effects of oleoylethanolamide supplementation and calorie restriction: a triple-blind randomized controlled clinical trial. J Cell Physiol 236:417–426
pubmed: 32572955
doi: 10.1002/jcp.29870
Umehara H, Fabbri R, Provensi G, Passani MB (2016) The hypophagic factor oleoylethanolamide differentially increases c-fos expression in appetite regulating centres in the brain of wild type and histamine deficient mice. Pharmacol Res 113:100–107
pubmed: 27543461
doi: 10.1016/j.phrs.2016.08.020
Valdés JL, Sánchez C, Riveros ME, Blandina P, Contreras M, Farías P, Torrealba F (2010) The histaminergic tuberomammillary nucleus is critical for motivated arousal. Eur J Neurosci 31:2073–2085
pubmed: 20529118
doi: 10.1111/j.1460-9568.2010.07241.x
Venner A, Mochizuki T, De Luca R, Anaclet C, Scammell TE, Saper CB, Arrigoni E, Fuller PM (2019) Reassessing the role of histaminergic Tuberomammillary neurons in arousal control. J Neurosci 39:8929–8939
pubmed: 31548232
pmcid: 6832676
doi: 10.1523/JNEUROSCI.1032-19.2019
Volkow ND, Wang GJ, Baler RD (2011) Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 15:37–46
pubmed: 21109477
doi: 10.1016/j.tics.2010.11.001
Westerink BH, Cremers TI, De Vries JB, Liefers H, Tran N, De Boer P (2002) Evidence for activation of histamine H3 autoreceptors during handling stress in the prefrontal cortex of the rat. Synapse 43:238–243
pubmed: 11835518
doi: 10.1002/syn.10043
Yasuda T, Masaki T, Sakata T, Yoshimatsu H (2004) Hypothalamic neuronal histamine regulates sympathetic nerve activity and expression of uncoupling protein 1 mRNA in brown adipose tissue in rats. Neuroscience 125:535–540
pubmed: 15099666
doi: 10.1016/j.neuroscience.2003.11.039
Yoshikawa T, Nakamura T, Yanai K (2021) Histaminergic neurons in the tuberomammillary nucleus as a control Centre for wakefulness. Br J Pharmacol 178:750–769
pubmed: 32744724
doi: 10.1111/bph.15220
Yu HL, Sun LP, Li MM, Quan ZS (2015) Involvement of norepinephrine and serotonin system in antidepressant-like effects of oleoylethanolamide in the mice models of behavior despair. Neurosci Lett 593:24–28
pubmed: 25778418
doi: 10.1016/j.neulet.2015.03.019