Increased biosynthesis of acetyl-CoA in the yeast Saccharomyces cerevisiae by overexpression of a deregulated pantothenate kinase gene and engineering of the coenzyme A biosynthetic pathway.


Journal

Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612

Informations de publication

Date de publication:
Oct 2021
Historique:
received: 08 03 2021
accepted: 06 08 2021
revised: 20 07 2021
pubmed: 8 9 2021
medline: 9 10 2021
entrez: 7 9 2021
Statut: ppublish

Résumé

Coenzyme A (CoA) and its derivatives such as acetyl-CoA are essential metabolites for several biosynthetic reactions. In the yeast S. cerevisiae, five enzymes (encoded by essential genes CAB1-CAB5; coenzyme A biosynthesis) are required to perform CoA biosynthesis from pantothenate, cysteine, and ATP. Similar to enzymes from other eukaryotes, yeast pantothenate kinase (PanK, encoded by CAB1) turned out to be inhibited by acetyl-CoA. By genetic selection of intragenic suppressors of a temperature-sensitive cab1 mutant combined with rationale mutagenesis of the presumed acetyl-CoA binding site within PanK, we were able to identify the variant CAB1 W331R, encoding a hyperactive PanK completely insensitive to inhibition by acetyl-CoA. Using a versatile gene integration cassette containing the TPI1 promoter, we constructed strains overexpressing CAB1 W331R in combination with additional genes of CoA biosynthesis (CAB2, CAB3, HAL3, CAB4, and CAB5). In these strains, the level of CoA nucleotides was 15-fold increased, compared to a reference strain without additional CAB genes. Overexpression of wild-type CAB1 instead of CAB1 W331R turned out as substantially less effective (fourfold increase of CoA nucleotides). Supplementation of overproducing strains with additional pantothenate could further elevate the level of CoA (2.3-fold). Minor increases were observed after overexpression of FEN2 (encoding a pantothenate permease) and deletion of PCD1 (CoA-specific phosphatase). We conclude that the strategy described in this work may improve the efficiency of biotechnological applications depending on acetyl-CoA. Key points • A gene encoding a hyperactive yeast pantothenate kinase (PanK) was constructed. • Overexpression of CoA biosynthetic genes elevated CoA nucleotides 15-fold. • Supplementation with pantothenate further increased the level of CoA nucleotides.

Identifiants

pubmed: 34491400
doi: 10.1007/s00253-021-11523-4
pii: 10.1007/s00253-021-11523-4
pmc: PMC8494682
doi:

Substances chimiques

Acetyl Coenzyme A 72-89-9
Phosphotransferases (Alcohol Group Acceptor) EC 2.7.1.-
pantothenate kinase EC 2.7.1.33

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7321-7337

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : SCHU856/9-1

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2021. The Author(s).

Références

Abrie JA, González A, Strauss E, Ariño J (2012) Functional mapping of the disparate activities of the yeast moonlighting protein Hal3. Biochem J 442:357–368. https://doi.org/10.1042/BJ20111466
doi: 10.1042/BJ20111466 pubmed: 22124281
Abrie JA, Molero C, Ariño J, Strauss E (2015) Complex stability and dynamic subunit interchange modulates the disparate activities of the yeast moonlighting proteins Hal3 and Vhs3. Sci Rep 5:15774. https://doi.org/10.1038/srep15774
Baković J, López Martínez D, Nikolaou S, Yu BYK, Tossounian MA, Tsuchiya Y, Thrasivoulou C, Filonenko V, Gout I (2021) Regulation of the CoA biosynthetic complex assembly in mammalian cells. Int J Mol Sci 22:1131. https://doi.org/10.3390/ijms 22031131
Baković J, Yu BYK, Silva D, Chew SP, Kim S, Ahn SH, Palmer L, Aloum L, Stanzani G, Malanchuk O, Duchen MR, Singer M, Filonenko V, Lee TH, Skehel M, Gout I (2019) A key metabolic integrator, coenzyme A, modulates the activity of peroxiredoxin 5 via covalent modification. Mol Cell Biochem 461:91–102. https://doi.org/10.1007/s11010-019-03593-w
doi: 10.1007/s11010-019-03593-w pubmed: 31375973 pmcid: 6790197
Bergmeyer HU (1974) Methods of enzymatic analysis. Vol. 4, 2
Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132. https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2%3c115::AID-YEA204%3e3.0.CO;2-2
doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 pubmed: 9483801
Brohée S, Janky R, Abdel-Sater F, Vanderstocken G, André B, van Helden J (2011) Unraveling networks of co-regulated genes on the sole basis of genome sequences. Nucleic Acids Res 39:6340–6358. https://doi.org/10.1093/nar/gkr264
doi: 10.1093/nar/gkr264 pubmed: 21572103 pmcid: 3159452
Calder RB, Williams RS, Ramaswamy G, Rock CO, Campbell E, Unkles SE, Kinghorn JR, Jackowski S (1999) Cloning and characterization of a eukaryotic pantothenate kinase gene (panK) from Aspergillus nidulans. J Biol Chem 274:2014–2020. https://doi.org/10.1074/jbc.274.4.2014
doi: 10.1074/jbc.274.4.2014 pubmed: 9890959
Cartwright JL, Gasmi L, Spiller DG, McLennan AG (2000) The Saccharomyces cerevisiae PCD1 gene encodes a peroxisomal nudix hydrolase active toward coenzyme A and its derivatives. J Biol Chem 275:32925–32930. https://doi.org/10.1074/jbc.M005015200
doi: 10.1074/jbc.M005015200 pubmed: 10922370
Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J (2013) Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng 15:48–54. https://doi.org/10.1016/j.ymben.2012.11.002
doi: 10.1016/j.ymben.2012.11.002 pubmed: 23164578
Daugherty M, Polanuyer B, Farrell M, Scholle M, Lykidis A, de Crécy-Lagard V, Osterman A (2002) Complete reconstitution of the human coenzyme A biosynthetic pathway via comparative genomics. J Biol Chem 277:21431–21439. https://doi.org/10.1074/jbc.M201708200
doi: 10.1074/jbc.M201708200 pubmed: 11923312
Dusi S, Valletta L, Haack TB, Tsuchiya Y, Venco P, Pasqualato S, Goffrini P, Tigano M, Demchenko N, Wieland T, Schwarzmayr T, Strom TM, Invernizzi F, Garavaglia B, Gregory A, Sanford L, Hamada J, Bettencourt C, Houlden H, Chiapparini L, Zorzi G, Kurian MA, Nardocci N, Prokisch H, Hayflick S, Gout I, Tiranti V (2014) Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation. Am J Hum Genet 94:11–22. https://doi.org/10.1016/j.ajhg.2013.11.008
doi: 10.1016/j.ajhg.2013.11.008 pubmed: 24360804 pmcid: 3882905
Galdieri L, Zhang T, Rogerson D, Lleshi R, Vancura A (2014) Protein acetylation and acetyl coenzyme a metabolism in budding yeast. Eukaryot Cell 13:1472–1483. https://doi.org/10.1128/EC.00189-14
doi: 10.1128/EC.00189-14 pubmed: 25326522 pmcid: 4248685
Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524. https://doi.org/10.1093/nar/24.13.2519
doi: 10.1093/nar/24.13.2519 pubmed: 8692690 pmcid: 145975
Hayflick SJ (2014) Defective pantothenate metabolism and neurodegeneration. Biochem Soc Trans 42:1063–1068. https://doi.org/10.1042/BST20140098
doi: 10.1042/BST20140098 pubmed: 25110003 pmcid: 5906047
Hong BS, Senisterra G, Rabeh WM, Vedadi M, Leonardi R, Zhang YM, Rock CO, Jackowski S, Park HW (2007) Crystal structures of human pantothenate kinases. Insights into allosteric regulation and mutations linked to a neurodegeneration disorder. J Biol Chem 282:27984–27993. https://doi.org/10.1074/jbc.M701915200
doi: 10.1074/jbc.M701915200 pubmed: 17631502
Hong KQ, Fu XM, Dong SS, Xiao DG, Dong J (2019) Modulating acetate ester and higher alcohol production in Saccharomyces cerevisiae through the cofactor engineering. J Ind Microbiol Biotechnol 46:1003–1011. https://doi.org/10.1007/s10295-019-02176-4
doi: 10.1007/s10295-019-02176-4 pubmed: 30969383
Luso A, Wiersma M, Schüller HJ, Pode-Shakked B, Marek-Yagel D, Grigat M, Schwarzmayr T, Berutti R, Alhaddad B, Kanon B, Grzeschik NA, Okun JG, Perles Z, Salem Y, Barel O, Vardi A, Rubinshtein M, Tirosh T, Dubnov-Raz G, Messias AC, Terrile C, Barshack I, Volkov A, Avivi C, Eyal E, Mastantuono E, Kumbar M, Abudi S, Braunisch M, Strom TM, Meitinger T, Hoffmann GF, Prokisch H, Haack TB, Brundel BJJM, Haas D, Sibon OCM, Anikster Y (2018) Mutations in PPCS, encoding Phosphopantothenoylcysteine Synthetase, cause autosomal-recessive dilated cardiomyopathy. Am J Hum Genet 102:1018–1030. https://doi.org/10.1016/j.ajhg.2018.03.022
doi: 10.1016/j.ajhg.2018.03.022
Leonardi R, Chohnan S, Zhang YM, Virga KG, Lee RE, Rock CO, Jackowski S (2005a) A pantothenate kinase from Staphylococcus aureus refractory to feedback regulation by coenzyme A. J Biol Chem 280:3314–3322. https://doi.org/10.1074/jbc.M411608200
doi: 10.1074/jbc.M411608200 pubmed: 15548531
Leonardi R, Zhang YM, Rock CO, Jackowski S (2005b) Coenzyme A: back in action. Prog Lipid Res 44:125–153. https://doi.org/10.1016/j.plipres.2005.04.001
doi: 10.1016/j.plipres.2005.04.001 pubmed: 15893380
Lian J, Si T, Nair NU, Zhao H (2014) Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng 24:139–149. https://doi.org/10.1016/j.ymben.2014.05.010
doi: 10.1016/j.ymben.2014.05.010 pubmed: 24853351
Luo X, Reiter MA, d’Espaux L, Wong J, Denby CM, Lechner A, Zhang Y, Grzybowski AT, Harth S, Lin W, Lee H, Yu C, Shin J, Deng K, Benites VT, Wang G, Baidoo EEK, Chen Y, Dev I, Petzold CJ, Keasling JD (2019) Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567:123–126. https://doi.org/10.1038/s41586-019-0978-9
doi: 10.1038/s41586-019-0978-9 pubmed: 30814733
Meadows AL, Hawkins KM, Tsegaye Y, Antipov E, Kim Y, Raetz L, Dahl RH, Tai A, Mahatdejkul-Meadows T, Xu L, Zhao L, Dasika MS, Murarka A, Lenihan J, Eng D, Leng JS, Liu CL, Wenger JW, Jiang H, Chao L, Westfall P, Lai J, Ganesan S, Jackson P, Mans R, Platt D, Reeves CD, Saija PR, Wichmann G, Holmes VF, Benjamin K, Hill PW, Gardner TS, Tsong AE (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537:694–697. https://doi.org/10.1038/nature19769
doi: 10.1038/nature19769 pubmed: 27654918
Milke L, Marienhagen J (2020) Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis. Appl Microbiol Biotechnol 104:6057–6065. https://doi.org/10.1007/s00253-020-10643-7
doi: 10.1007/s00253-020-10643-7 pubmed: 32385515 pmcid: 7316851
Mumberg D, Müller R, Funk M (1994) Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res 22:5767–5768. https://doi.org/10.1093/nar/22.25.5767
doi: 10.1093/nar/22.25.5767 pubmed: 7838736 pmcid: 310147
Naquet P, Kerr EW, Vickers SD, Leonardi R (2020) Regulation of coenzyme A levels by degradation: the ‘Ins and Outs’. Prog Lipid Res 78:101028. 10.1016/ j.plipres.2020.101028
Olzhausen J, Moritz T, Neetz T, Schüller HJ (2013) Molecular characterization of the heteromeric coenzyme A-synthesizing protein complex (CoA-SPC) in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 13:565–573. https://doi.org/10.1111/1567-1364.12058
doi: 10.1111/1567-1364.12058 pubmed: 23789928
Olzhausen J, Schübbe S, Schüller HJ (2009) Genetic analysis of coenzyme A biosynthesis in the yeast Saccharomyces cerevisiae: identification of a conditional mutation in the pantothenate kinase gene CAB1. Curr Genet 55:163–173. https://doi.org/10.1007/s00294-009-0234-1
doi: 10.1007/s00294-009-0234-1 pubmed: 19266201
Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532. https://doi.org/10.1038/nature12051
doi: 10.1038/nature12051 pubmed: 23575629
Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G (2015) Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab 21:805–821. https://doi.org/10.1016/j.cmet.2015.05.014
doi: 10.1016/j.cmet.2015.05.014 pubmed: 26039447
Rock CO, Calder RB, Karim MA, Jackowski S (2000) Pantothenate kinase regulation of the intracellular concentration of coenzyme A. J Biol Chem 275:1377–1383. https://doi.org/10.1074/jbc.275.2.1377
doi: 10.1074/jbc.275.2.1377 pubmed: 10625688
Rock CO, Park HW, Jackowski S (2003) Role of feedback regulation of pantothenate kinase (CoaA) in control of coenzyme A levels in Escherichia coli. J Bacteriol 185:3410–3415. https://doi.org/10.1128/JB.185.11.3410-3415.2003
doi: 10.1128/JB.185.11.3410-3415.2003 pubmed: 12754240 pmcid: 155388
Rothstein R (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194:281–301. https://doi.org/10.1016/0076-6879(91)94022-5
doi: 10.1016/0076-6879(91)94022-5 pubmed: 2005793
Ruiz A, González A, Muñoz I, Serrano R, Abrie JA, Strauss E, Ariño J (2009) Moonlighting proteins Hal3 and Vhs3 form a heteromeric PPCDC with Ykl088w in yeast CoA biosynthesis. Nat Chem Biol 5:920–928. https://doi.org/10.1038/nchembio.243
doi: 10.1038/nchembio.243 pubmed: 19915539
Schadeweg V, Boles E (2016a) n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnol Biofuels 9:44. https://doi.org/10.1186/s13068-016-0456-7
Schadeweg V, Boles E (2016b) Increasing n-butanol production with Saccharomyces cerevisiae by optimizing acetyl-CoA synthesis, NADH levels and trans-2-enoyl-CoA reductase expression. Biotechnol Biofuels 9:257. https://doi.org/10.1186/s13068-016-0673-0
Shi L, Tu BP (2013) Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 110:7318–7323. https://doi.org/10.1073/pnas.1302490110
doi: 10.1073/pnas.1302490110 pubmed: 23589851 pmcid: 3645525
Shi L, Tu BP (2015) Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol 33:125–131. https://doi.org/10.1016/j.ceb.2015.02.003
doi: 10.1016/j.ceb.2015.02.003 pubmed: 25703630 pmcid: 4380630
Sibon OCM, Strauss E (2016) Coenzyme A: to make it or uptake it? Nat Rev Mol Cell Biol 17:605–606. https://doi.org/10.1038/nrm.2016.110
doi: 10.1038/nrm.2016.110 pubmed: 27552973
Sikorski RS, Boeke JD (1991) In vitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast. Methods Enzymol 194:302–318. https://doi.org/10.1016/0076-6879(91)94023-6
doi: 10.1016/0076-6879(91)94023-6 pubmed: 2005795
Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
doi: 10.1093/genetics/122.1.19 pubmed: 2659436 pmcid: 1203683
Song WJ, Jackowski S (1992) Cloning, sequencing, and expression of the pantothenate kinase (coaA) gene of Escherichia coli. J Bacteriol 174:6411–6417. https://doi.org/10.1128/jb.174.20.6411-6417.1992
doi: 10.1128/jb.174.20.6411-6417.1992 pubmed: 1328157 pmcid: 207592
Spry C, Kirk K, Saliba KJ (2008) Coenzyme A biosynthesis: an antimicrobial drug target. FEMS Microbiol Rev 32:56–106. https://doi.org/10.1111/j.1574-6976.2007.00093.x
doi: 10.1111/j.1574-6976.2007.00093.x pubmed: 18173393
Srinivasan B, Baratashvili M, van der Zwaag M, Kanon B, Colombelli C, Lambrechts RA, Schaap O, Nollen EA, Podgoršek A, Kosec G, Petković H, Hayflick S, Tiranti V, Reijngoud DJ, Grzeschik NA, Sibon OC (2015) Extracellular 4’-phosphopantetheine is a source for intracellular coenzyme A synthesis. Nat Chem Biol 11:784–792. https://doi.org/10.1038/nchembio.1906
doi: 10.1038/nchembio.1906 pubmed: 26322826
Stolz J, Sauer N (1999) The fenpropimorph resistance gene FEN2 from Saccharomyces cerevisiae encodes a plasma membrane H
doi: 10.1074/jbc.274.26.18747 pubmed: 10373490
Stolz J, Caspari T, Carr AM, Sauer N (2004) Cell division defects of Schizosaccharomyces pombe liz1
doi: 10.1128/EC.3.2.406-412.2004 pubmed: 15075270 pmcid: 387649
Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S, Groisillier A, Testet E, Costaglioli P, Cauet G, Degryse E, Balbuena D, Winter J, Achstetter T, Spagnoli R, Pompon D, Dumas B (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21:143–149. https://doi.org/10.1038/nbt775
doi: 10.1038/nbt775 pubmed: 12514739
Theodoulou FL, Sibon OC, Jackowski S, Gout I (2014) Coenzyme A and its derivatives: renaissance of a textbook classic. Biochem Soc Trans 42:1025–1032. https://doi.org/10.1042/BST20140176
doi: 10.1042/BST20140176 pubmed: 25109997
Tippmann S, Scalcinati G, Siewers V, Nielsen J (2016) Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed. Biotechnol Bioeng 113:72–81. https://doi.org/10.1002/bit.25683
doi: 10.1002/bit.25683 pubmed: 26108688
Vallari DS, Jackowski S, Rock CO (1987) Regulation of pantothenate kinase by coenzyme A and its thioesters. J Biol Chem 262:2468–2471
doi: 10.1016/S0021-9258(18)61527-3 pubmed: 3029083
Van Zeebroeck G, Rubio-Texeira M, Schothorst J, Thevelein JM (2014) Specific analogues uncouple transport, signalling, oligo-ubiquitination and endocytosis in the yeast Gap1 amino acid transceptor. Mol Microbiol 93:213–233. https://doi.org/10.1111/mmi.12654
doi: 10.1111/mmi.12654 pubmed: 24852066 pmcid: 4285233
White WH, Gunyuzlu PL, Toyn JH (2001) Saccharomyces cerevisiae is capable of de novo pantothenic acid biosynthesis involving a novel pathway of β-alanine production from spermine. J Biol Chem 276:10794–10800. https://doi.org/10.1074/jbc.M009804200
doi: 10.1074/jbc.M009804200 pubmed: 11154694
Zhang YM, Rock CO, Jackowski S (2005) Feedback regulation of murine pantothenate kinase 3 by coenzyme A and coenzyme A thioesters. J Biol Chem 280:32594–32601. https://doi.org/10.1074/jbc.M506275200
doi: 10.1074/jbc.M506275200 pubmed: 16040613
Zhyvoloup A, Nemazanyy I, Babich A, Panasyuk G, Pobigailo N, Vudmaska M, Naidenov V, Kukharenko O, Palchevskii S, Savinska L, Ovcharenko G, Verdier F, Valovka T, Fenton T, Rebholz H, Wang ML, Shepherd P, Matsuka G, Filonenko V, Gout IT (2002) Molecular cloning of CoA Synthase: The missing link in CoA biosynthesis. J Biol Chem 277:22107–22110. https://doi.org/10.1074/jbc.C200195200
doi: 10.1074/jbc.C200195200 pubmed: 11980892
Zhyvoloup A, Nemazanyy I, Panasyuk G, Valovka T, Fenton T, Rebholz H, Wang ML, Foxon R, Lyzogubov V, Usenko V, Kyyamova R, Gorbenko O, Matsuka G, Filonenko V, Gout IT (2003) Subcellular localization and regulation of coenzyme A synthase. J Biol Chem 278:50316–50321. https://doi.org/10.1074/jbc.M307763200
doi: 10.1074/jbc.M307763200 pubmed: 14514684

Auteurs

Judith Olzhausen (J)

Center for Functional Genomics of Microbes, Abteilung Molekulare Genetik und Infektionsbiologie, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany.
Cendres+Métaux SA, CH-2501, Biel/Bienne, Switzerland.

Mathias Grigat (M)

Center for Functional Genomics of Microbes, Abteilung Molekulare Genetik und Infektionsbiologie, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany.

Larissa Seifert (L)

Center for Functional Genomics of Microbes, Abteilung Molekulare Genetik und Infektionsbiologie, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany.
Universitätsklinikum Hamburg-Eppendorf, Medizinische Klinik, Nephrologie, Hamburg, Germany.

Tom Ulbricht (T)

Center for Functional Genomics of Microbes, Abteilung Molekulare Genetik und Infektionsbiologie, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany.

Hans-Joachim Schüller (HJ)

Center for Functional Genomics of Microbes, Abteilung Molekulare Genetik und Infektionsbiologie, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany. schuell@uni-greifswald.de.

Articles similaires

Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins
Metabolic Networks and Pathways Saccharomyces cerevisiae Computational Biology Synthetic Biology Computer Simulation

Classifications MeSH