Deep Recursive Bayesian Tracking for Fully Automatic Centerline Extraction of Coronary Arteries in CT Images.
computed tomography
coronary artery
deep learning
tracking
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
10 Sep 2021
10 Sep 2021
Historique:
received:
30
07
2021
revised:
07
09
2021
accepted:
08
09
2021
entrez:
28
9
2021
pubmed:
29
9
2021
medline:
30
9
2021
Statut:
epublish
Résumé
Extraction of coronary arteries in coronary computed tomography (CT) angiography is a prerequisite for the quantification of coronary lesions. In this study, we propose a tracking method combining a deep convolutional neural network (DNN) and particle filtering method to identify the trajectories from the coronary ostium to each distal end from 3D CT images. The particle filter, as a non-linear approximator, is an appropriate tracking framework for such thin and elongated structures; however, the robust 'vesselness' measurement is essential for extracting coronary centerlines. Importantly, we employed the DNN to robustly measure the vesselness using patch images, and we integrated softmax values to the likelihood function in our particle filtering framework. Tangent patches represent cross-sections of coronary arteries of circular shapes. Thus, 2D tangent patches are assumed to include enough features of coronary arteries, and the use of 2D patches significantly reduces computational complexity. Because coronary vasculature has multiple bifurcations, we also modeled a method to detect branching sites by clustering the particle locations. The proposed method is compared with three commercial workstations and two conventional methods from the academic literature.
Identifiants
pubmed: 34577293
pii: s21186087
doi: 10.3390/s21186087
pmc: PMC8471768
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Research Foundation of Korea
ID : 1345332282
Organisme : Ministry of Science and ICT, South Korea
ID : 2020-0-00161
Références
Med Image Anal. 2001 Sep;5(3):195-206
pubmed: 11524226
Med Image Anal. 2019 Jan;51:46-60
pubmed: 30388501
IEEE Trans Pattern Anal Mach Intell. 2019 Jan;41(1):176-189
pubmed: 29990011
IEEE Trans Med Imaging. 2004 Jan;23(1):130-3
pubmed: 14719694
Am J Cardiol. 2006 Feb 1;97(3):343-8
pubmed: 16442393
Comput Med Imaging Graph. 2020 Mar;80:101688
pubmed: 31926366
Med Image Anal. 2009 Dec;13(6):819-45
pubmed: 19818675
Nature. 2015 Feb 26;518(7540):529-33
pubmed: 25719670
Med Image Anal. 2009 Oct;13(5):701-14
pubmed: 19632885
PLoS One. 2016 Aug 18;11(8):e0156837
pubmed: 27536939
Eur Heart J. 2005 Aug;26(15):1482-7
pubmed: 15840624
Comput Methods Programs Biomed. 2006 Dec;84(2-3):135-45
pubmed: 17045696
Comput Methods Programs Biomed. 2017 Nov;151:139-149
pubmed: 28946995
Med Image Anal. 2021 Oct;73:102193
pubmed: 34371440
Med Image Anal. 2017 Dec;42:60-88
pubmed: 28778026