Widespread bacterial diversity within the bacteriome of fungi.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
07 10 2021
Historique:
received: 16 02 2021
accepted: 20 09 2021
entrez: 8 10 2021
pubmed: 9 10 2021
medline: 24 12 2021
Statut: epublish

Résumé

Knowledge of associations between fungal hosts and their bacterial associates has steadily grown in recent years as the number and diversity of examinations have increased, but current knowledge is predominantly limited to a small number of fungal taxa and bacterial partners. Here, we screened for potential bacterial associates in over 700 phylogenetically diverse fungal isolates, representing 366 genera, or a tenfold increase compared with previously examined fungal genera, including isolates from several previously unexplored phyla. Both a 16 S rDNA-based exploration of fungal isolates from four distinct culture collections spanning North America, South America and Europe, and a bioinformatic screen for bacterial-specific sequences within fungal genome sequencing projects, revealed that a surprisingly diverse array of bacterial associates are frequently found in otherwise axenic fungal cultures. We demonstrate that bacterial associations with diverse fungal hosts appear to be the rule, rather than the exception, and deserve increased consideration in microbiome studies and in examinations of microbial interactions.

Identifiants

pubmed: 34621007
doi: 10.1038/s42003-021-02693-y
pii: 10.1038/s42003-021-02693-y
pmc: PMC8497576
doi:

Substances chimiques

DNA, Bacterial 0
DNA, Ribosomal 0

Banques de données

figshare
['10.6084/m9.figshare.c.5582283.v4']

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

1168

Subventions

Organisme : DOE | SC | Biological and Environmental Research (BER)
ID : LANLF59T

Informations de copyright

© 2021. The Author(s).

Références

Simon, J., Marchesi, J. R., Mougel, C. & Selosse, M. A. Host-microbiota interactions: from holobiont theory to analysis. Microbiome 7, 1–5 (2019).
doi: 10.1186/s40168-019-0619-4
Peay, K. G., Kennedy, P. G. & Talbot, J. M. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14, 434–447 (2016).
pubmed: 27296482 doi: 10.1038/nrmicro.2016.59
Cregger, M. A. et al. The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6, 31 (2018).
pubmed: 29433554 pmcid: 5810025 doi: 10.1186/s40168-018-0413-8
Ross, A. A., Hoffmann, A. R. & Neufeld, J. D. The skin microbiome of vertebrates. Microbiome 7, 1–14 (2019).
doi: 10.1186/s40168-019-0694-6
Huseyin, C. E., O’Toole, P. W., Cotter, P. D. & Scanlan, P. D. Forgotten fungi—the gut mycobiome in human health and disease. FEMS Microbiol. Rev. 41, 479–511 (2017).
pubmed: 28430946 doi: 10.1093/femsre/fuw047
Partida‐Martínez, L. P. The fungal holobiont: evidence from early diverging fungi. Environ. Microbiol. 19, 2919–2923 (2017).
pubmed: 28295957 doi: 10.1111/1462-2920.13731
Deveau, A. et al. Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 42, 335–352 (2018).
pubmed: 29471481 doi: 10.1093/femsre/fuy008
Frey-Klett, P. et al. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol. Mol. Biol. Rev. 75, 583–609 (2011).
pubmed: 22126995 pmcid: 3232736 doi: 10.1128/MMBR.00020-11
Hervé, V., Le Roux, X., Uroz, S., Gelhaye, E. & Frey‐Klett, P. Diversity and structure of bacterial communities associated with Phanerochaete chrysosporium during wood decay. Environ. Microbiol. 16, 2238–2252 (2014).
pubmed: 24286477 doi: 10.1111/1462-2920.12347
Scherlach, K. & Hertweck, C. Mediators of mutualistic microbe–microbe interactions. Nat. Prod. Rep. 35, 303–308 (2018).
pubmed: 28884173 doi: 10.1039/C7NP00035A
Bonfante, P. & Desirò, A. Who lives in a fungus? The diversity, origins and functions of fungal endobacteria living in Mucoromycota. ISME J. 11, 1727–1735 (2017).
pubmed: 28387771 pmcid: 5520026 doi: 10.1038/ismej.2017.21
Pawlowska, T. E. et al. Biology of fungi and their bacterial endosymbionts. Annu. Rev. Phytopathol. 56, 289–309 (2018).
pubmed: 30149793 doi: 10.1146/annurev-phyto-080417-045914
Bonfante, P. & Venice, F. Mucoromycota: going to the roots of plant-interacting fungi. Fungal Biol. Rev. 34, 100–113 (2020).
doi: 10.1016/j.fbr.2019.12.003
Hoffman, M. T. & Arnold, A. E. Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl. Environ. Microbiol. 76, 4063–4075 (2010).
pubmed: 20435775 pmcid: 2893488 doi: 10.1128/AEM.02928-09
Shaffer, J. P. et al. Diversity, specificity, and phylogenetic relationships of endohyphal bacteria in fungi that inhabit tropical seeds and leaves. Front. Ecol. Evol. 4, 116 (2016).
doi: 10.3389/fevo.2016.00116
Gohar, D., Pent, M., Põldmaa, K. & Bahram, M. Bacterial community dynamics across fungal fruiting body developmental stages. FEMS Microbiol. Ecol. 96, fiaa175 (2020).
Pent, M., Bahram, M. & Põldmaa, K. Fruitbody chemistry underlies the structure of endofungal bacterial communities across fungal guilds and phylogenetic groups. ISME J. 14, 2131–2141 (2020).
Grigoriev, I. V. et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, D699–D704 (2014).
pubmed: 24297253 doi: 10.1093/nar/gkt1183
Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046 (2016).
pubmed: 27738200 pmcid: 6078412 doi: 10.3852/16-042
Partida-Martinez, L. P. et al. Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus. Int. J. Syst. Evol. Microbiol. 57, 2583–2590 (2007).
pubmed: 17978222 doi: 10.1099/ijs.0.64660-0
Schulz-Bohm, K. et al. Fungus-associated bacteriome in charge of their host behavior. Fungal Genet. Biol. 102, 38–48 (2017).
pubmed: 27486066 doi: 10.1016/j.fgb.2016.07.011
Takashima, Y. et al. Prevalence and intra-family phylogenetic divergence of Burkholderiaceae-related endobacteria associated with species of Mortierella. Microbes Environ. 33, 417–427 (2018).
Okrasińska, A. et al. New endohyphal relationships between mucoromycota and burkholderiaceae representatives. Appl. Environ. Microbiol. 87, e02707–e02720 (2021).
pubmed: 33483310 pmcid: 8091615 doi: 10.1128/AEM.02707-20
Telagathoti, A., Probst, M. & Peintner, U. Habitat, snow-cover and soil pH, affect the distribution and diversity of Mortierella species and their associations to bacteria. Front. Microbiol. 12, 1817 (2021).
doi: 10.3389/fmicb.2021.669784
Baltrus, D. A. et al. Absence of genome reduction in diverse, facultative endohyphal bacteria. Microb. Genom. 3, e000101 (2017).
Benucci, G. M. N. et al. Microbial communities associated with the black morel Morchella sextelata cultivated in greenhouses. PeerJ 7, e7744 (2019). 2019.
pubmed: 31579614 pmcid: 6766373 doi: 10.7717/peerj.7744
Bravo, D. et al. Isolation of oxalotrophic bacteria able to disperse on fungal mycelium. FEMS Microbiol. Lett. 348, 157–166 (2013).
pubmed: 24106816 doi: 10.1111/1574-6968.12287
Torres-Cruz, T. J. et al. Bifiguratus adelaidae, gen. et sp. nov., a new member of Mucoromycotina in endophytic and soil-dwelling habitats. Mycologia 109, 363–378 (2017).
pubmed: 28876195 doi: 10.1080/00275514.2017.1364958
Almeida, C. et al. Unveiling concealed functions of endosymbiotic bacteria harbored in the ascomycete Stachylidium bicolor. Appl. Environ. Microbiol. 84, e00660–18 (2018).
Ohshima, S. et al. Mycoavidus cysteinexigens gen. nov., sp. nov., an endohyphal bacterium isolated from a soil isolate of the fungus Mortierella elongata. Int. J. Syst. Evol. Microbiol. 66, 2052–2057 (2016).
pubmed: 26920389 doi: 10.1099/ijsem.0.000990
Uehling, J. et al. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens. Environ. Microbiol. 19, 2964–2983 (2017).
pubmed: 28076891 doi: 10.1111/1462-2920.13669
Sato, Y. Detection of betaproteobacteria inside the mycelium of the fungus Mortierella elongata. Microbes Environ. 25, 321–324 (2010).
Wu, Z. et al. Molecular characterization of microbial communities in the rhizosphere soils and roots of diseased and healthy Panax notoginseng. Antonie van. Leeuwenhoek 108, 1059–1074 (2015). 2015.
pubmed: 26296378 doi: 10.1007/s10482-015-0560-x
Vandepol, N. et al. Resolving the Mortierellaceae phylogeny through synthesis of multi-gene phylogenetics and phylogenomics. Fungal Divers. 104, 267–289 (2020).
pubmed: 33364917 pmcid: 7751987 doi: 10.1007/s13225-020-00455-5
Stoecker, K., Dorninger, C., Daims, H. & Wagner, M. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl. Environ. Microbiol. 76, 922–926 (2010).
pubmed: 19966029 doi: 10.1128/AEM.02456-09
Choi, H. M. et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development 145, dev165753 (2018).
Partida-Martinez, L. P. & Hertweck, C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437, 884–888 (2005).
pubmed: 16208371 doi: 10.1038/nature03997
Rast, P. et al. Three novel species with peptidoglycan cell walls form the new genus Lacunisphaera gen. nov. in the family Opitutaceae of the verrucomicrobial subdivision 4. Front. Microbiol. 8, 202 (2017).
pubmed: 28243229 pmcid: 5303756 doi: 10.3389/fmicb.2017.00202
Freitas, T. A. K., Li, P. E., Scholz, M. B. & Chain, P. S. Accurate read-based metagenome characterization using a hierarchical suite of unique signatures. Nucleic Acids Res. 43, e69–e69 (2015).
pubmed: 25765641 pmcid: 4446416 doi: 10.1093/nar/gkv180
Ghodsalavi, B. et al. A novel baiting microcosm approach used to identify the bacterial community associated with Penicillium bilaii hyphae in soil. PLoS ONE 12, e0187116 (2017).
pubmed: 29077733 pmcid: 5659649 doi: 10.1371/journal.pone.0187116
de Boer, W. Upscaling of fungal–bacterial interactions: from the lab to the field. Curr. Opin. Microbiol. 37, 35–41 (2017).
pubmed: 28437664 doi: 10.1016/j.mib.2017.03.007
Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).
pubmed: 25095880 pmcid: 4221126 doi: 10.1093/bioinformatics/btu531
Nilsson, R. H. et al. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).
pubmed: 30371820 doi: 10.1093/nar/gky1022
Kõljalg, U. et al. The taxon hypothesis paradigm—On the unambiguous detection and communication of taxa. Microorganisms 8, 1910 (2020).
pmcid: 7760934 doi: 10.3390/microorganisms8121910
Raja, H. A., Miller, A. N., Pearce, C. J. & Oberlies, N. H. Fungal identification using molecular tools: a primer for the natural products research community. J. Nat. Products 80, 756–770 (2017).
doi: 10.1021/acs.jnatprod.6b01085
Stackebrandt, E. and Goodfellow, M. Nucleic Acid Techniques in Bacterial Systematics (Wiley, 1991).
Muyzer, G., De Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).
pubmed: 7683183 pmcid: 202176 doi: 10.1128/aem.59.3.695-700.1993
Caporaso, J. G. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).
doi: 10.1073/pnas.1000080107 pubmed: 20534432
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
pubmed: 31341288 pmcid: 7015180 doi: 10.1038/s41587-019-0209-9
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
pubmed: 27214047 pmcid: 4927377 doi: 10.1038/nmeth.3869
Zhu, Y., Stephens, R. M., Meltzer, P. S. & Davis, S. R. SRAdb: query and use public next-generation sequencing data from within R. BMC Bioinform. 14, 19 (2013).
doi: 10.1186/1471-2105-14-19
Lo, C. C. & Chain, P. S. Rapid evaluation and quality control of next generation sequencing data with FaQCs. BMC Bioinform. 15, 1–8 (2014).
doi: 10.1186/s12859-014-0366-2
Li, P. E. et al. Enabling the democratization of the genomics revolution with a fully integrated web-based bioinformatics platform. Nucleic Acids Res. 45, 67–80 (2017).
pubmed: 27899609 doi: 10.1093/nar/gkw1027
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).
Shakya, M. et al. Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Sci. Rep. 10, 1–15 (2020).
doi: 10.1038/s41598-020-58356-1
Beliveau, B. J. et al. OligoMiner provides a rapid, flexible environment for the design of genome-scale oligonucleotide in situ hybridization probes. Proc. Natl Acad. Sci. USA 115, E2183–E2192 (2018).
pubmed: 29463736 pmcid: 5877937 doi: 10.1073/pnas.1714530115
Gans, J. D. & Wolinsky, M. Improved assay-dependent searching of nucleic acid sequence databases. Nucleic Acids Res. 36, e74–e74 (2008).
pubmed: 18515842 pmcid: 2475610 doi: 10.1093/nar/gkn301
Amann, R. I. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925 (1990).
pubmed: 2200342 pmcid: 184531 doi: 10.1128/aem.56.6.1919-1925.1990
Daims, H., Brühl, A., Amann, R., Schleifer, K. H. & Wagner, M. 1999. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444 (1999).
pubmed: 10553296 doi: 10.1016/S0723-2020(99)80053-8
Robinson, A. & Chain, P. Widespread bacterial diversity within the bacteriome of fungi supplementary information and data. figshare https://doi.org/10.6084/m9.figshare.c.5582283.v4 (2021)

Auteurs

Aaron J Robinson (AJ)

Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

Geoffrey L House (GL)

Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

Demosthenes P Morales (DP)

Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
Center of Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

Julia M Kelliher (JM)

Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

La Verne Gallegos-Graves (V)

Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

Erick S LeBrun (ES)

Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

Karen W Davenport (KW)

Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

Fabio Palmieri (F)

Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.

Andrea Lohberger (A)

Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.

Danaé Bregnard (D)

Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.

Aislinn Estoppey (A)

Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.

Matteo Buffi (M)

Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.

Christophe Paul (C)

Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.

Thomas Junier (T)

Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.

Vincent Hervé (V)

Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.

Guillaume Cailleau (G)

Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.

Simone Lupini (S)

Department of Civil and Environmental Engineering, University of Houston, Houston, TX, 77004, USA.

Hang N Nguyen (HN)

Department of Civil and Environmental Engineering, University of Houston, Houston, TX, 77004, USA.

Amy O Zheng (AO)

Department of Chemical and Biomolecular Engineering and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235-1604, USA.

Luciana Jandelli Gimenes (LJ)

Center for Environmental Research and Training, University of São Paulo, Cubatão, São Paulo, 11.540 -990, Brazil.

Saskia Bindschedller (S)

Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.

Debora F Rodrigues (DF)

Department of Civil and Environmental Engineering, University of Houston, Houston, TX, 77004, USA.

James H Werner (JH)

Center of Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

Jamey D Young (JD)

Department of Chemical and Biomolecular Engineering and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235-1604, USA.

Pilar Junier (P)

Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.

Patrick S G Chain (PSG)

Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA. pchain@lanl.gov.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Aerosols Humans Decontamination Air Microbiology Masks
Glycogen Storage Disease Type II Humans Critical Pathways Europe
Coal Metagenome Phylogeny Bacteria Genome, Bacterial

Classifications MeSH