Widespread bacterial diversity within the bacteriome of fungi.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
07 10 2021
07 10 2021
Historique:
received:
16
02
2021
accepted:
20
09
2021
entrez:
8
10
2021
pubmed:
9
10
2021
medline:
24
12
2021
Statut:
epublish
Résumé
Knowledge of associations between fungal hosts and their bacterial associates has steadily grown in recent years as the number and diversity of examinations have increased, but current knowledge is predominantly limited to a small number of fungal taxa and bacterial partners. Here, we screened for potential bacterial associates in over 700 phylogenetically diverse fungal isolates, representing 366 genera, or a tenfold increase compared with previously examined fungal genera, including isolates from several previously unexplored phyla. Both a 16 S rDNA-based exploration of fungal isolates from four distinct culture collections spanning North America, South America and Europe, and a bioinformatic screen for bacterial-specific sequences within fungal genome sequencing projects, revealed that a surprisingly diverse array of bacterial associates are frequently found in otherwise axenic fungal cultures. We demonstrate that bacterial associations with diverse fungal hosts appear to be the rule, rather than the exception, and deserve increased consideration in microbiome studies and in examinations of microbial interactions.
Identifiants
pubmed: 34621007
doi: 10.1038/s42003-021-02693-y
pii: 10.1038/s42003-021-02693-y
pmc: PMC8497576
doi:
Substances chimiques
DNA, Bacterial
0
DNA, Ribosomal
0
Banques de données
figshare
['10.6084/m9.figshare.c.5582283.v4']
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
1168Subventions
Organisme : DOE | SC | Biological and Environmental Research (BER)
ID : LANLF59T
Informations de copyright
© 2021. The Author(s).
Références
Simon, J., Marchesi, J. R., Mougel, C. & Selosse, M. A. Host-microbiota interactions: from holobiont theory to analysis. Microbiome 7, 1–5 (2019).
doi: 10.1186/s40168-019-0619-4
Peay, K. G., Kennedy, P. G. & Talbot, J. M. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14, 434–447 (2016).
pubmed: 27296482
doi: 10.1038/nrmicro.2016.59
Cregger, M. A. et al. The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6, 31 (2018).
pubmed: 29433554
pmcid: 5810025
doi: 10.1186/s40168-018-0413-8
Ross, A. A., Hoffmann, A. R. & Neufeld, J. D. The skin microbiome of vertebrates. Microbiome 7, 1–14 (2019).
doi: 10.1186/s40168-019-0694-6
Huseyin, C. E., O’Toole, P. W., Cotter, P. D. & Scanlan, P. D. Forgotten fungi—the gut mycobiome in human health and disease. FEMS Microbiol. Rev. 41, 479–511 (2017).
pubmed: 28430946
doi: 10.1093/femsre/fuw047
Partida‐Martínez, L. P. The fungal holobiont: evidence from early diverging fungi. Environ. Microbiol. 19, 2919–2923 (2017).
pubmed: 28295957
doi: 10.1111/1462-2920.13731
Deveau, A. et al. Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 42, 335–352 (2018).
pubmed: 29471481
doi: 10.1093/femsre/fuy008
Frey-Klett, P. et al. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol. Mol. Biol. Rev. 75, 583–609 (2011).
pubmed: 22126995
pmcid: 3232736
doi: 10.1128/MMBR.00020-11
Hervé, V., Le Roux, X., Uroz, S., Gelhaye, E. & Frey‐Klett, P. Diversity and structure of bacterial communities associated with Phanerochaete chrysosporium during wood decay. Environ. Microbiol. 16, 2238–2252 (2014).
pubmed: 24286477
doi: 10.1111/1462-2920.12347
Scherlach, K. & Hertweck, C. Mediators of mutualistic microbe–microbe interactions. Nat. Prod. Rep. 35, 303–308 (2018).
pubmed: 28884173
doi: 10.1039/C7NP00035A
Bonfante, P. & Desirò, A. Who lives in a fungus? The diversity, origins and functions of fungal endobacteria living in Mucoromycota. ISME J. 11, 1727–1735 (2017).
pubmed: 28387771
pmcid: 5520026
doi: 10.1038/ismej.2017.21
Pawlowska, T. E. et al. Biology of fungi and their bacterial endosymbionts. Annu. Rev. Phytopathol. 56, 289–309 (2018).
pubmed: 30149793
doi: 10.1146/annurev-phyto-080417-045914
Bonfante, P. & Venice, F. Mucoromycota: going to the roots of plant-interacting fungi. Fungal Biol. Rev. 34, 100–113 (2020).
doi: 10.1016/j.fbr.2019.12.003
Hoffman, M. T. & Arnold, A. E. Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl. Environ. Microbiol. 76, 4063–4075 (2010).
pubmed: 20435775
pmcid: 2893488
doi: 10.1128/AEM.02928-09
Shaffer, J. P. et al. Diversity, specificity, and phylogenetic relationships of endohyphal bacteria in fungi that inhabit tropical seeds and leaves. Front. Ecol. Evol. 4, 116 (2016).
doi: 10.3389/fevo.2016.00116
Gohar, D., Pent, M., Põldmaa, K. & Bahram, M. Bacterial community dynamics across fungal fruiting body developmental stages. FEMS Microbiol. Ecol. 96, fiaa175 (2020).
Pent, M., Bahram, M. & Põldmaa, K. Fruitbody chemistry underlies the structure of endofungal bacterial communities across fungal guilds and phylogenetic groups. ISME J. 14, 2131–2141 (2020).
Grigoriev, I. V. et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, D699–D704 (2014).
pubmed: 24297253
doi: 10.1093/nar/gkt1183
Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046 (2016).
pubmed: 27738200
pmcid: 6078412
doi: 10.3852/16-042
Partida-Martinez, L. P. et al. Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus. Int. J. Syst. Evol. Microbiol. 57, 2583–2590 (2007).
pubmed: 17978222
doi: 10.1099/ijs.0.64660-0
Schulz-Bohm, K. et al. Fungus-associated bacteriome in charge of their host behavior. Fungal Genet. Biol. 102, 38–48 (2017).
pubmed: 27486066
doi: 10.1016/j.fgb.2016.07.011
Takashima, Y. et al. Prevalence and intra-family phylogenetic divergence of Burkholderiaceae-related endobacteria associated with species of Mortierella. Microbes Environ. 33, 417–427 (2018).
Okrasińska, A. et al. New endohyphal relationships between mucoromycota and burkholderiaceae representatives. Appl. Environ. Microbiol. 87, e02707–e02720 (2021).
pubmed: 33483310
pmcid: 8091615
doi: 10.1128/AEM.02707-20
Telagathoti, A., Probst, M. & Peintner, U. Habitat, snow-cover and soil pH, affect the distribution and diversity of Mortierella species and their associations to bacteria. Front. Microbiol. 12, 1817 (2021).
doi: 10.3389/fmicb.2021.669784
Baltrus, D. A. et al. Absence of genome reduction in diverse, facultative endohyphal bacteria. Microb. Genom. 3, e000101 (2017).
Benucci, G. M. N. et al. Microbial communities associated with the black morel Morchella sextelata cultivated in greenhouses. PeerJ 7, e7744 (2019). 2019.
pubmed: 31579614
pmcid: 6766373
doi: 10.7717/peerj.7744
Bravo, D. et al. Isolation of oxalotrophic bacteria able to disperse on fungal mycelium. FEMS Microbiol. Lett. 348, 157–166 (2013).
pubmed: 24106816
doi: 10.1111/1574-6968.12287
Torres-Cruz, T. J. et al. Bifiguratus adelaidae, gen. et sp. nov., a new member of Mucoromycotina in endophytic and soil-dwelling habitats. Mycologia 109, 363–378 (2017).
pubmed: 28876195
doi: 10.1080/00275514.2017.1364958
Almeida, C. et al. Unveiling concealed functions of endosymbiotic bacteria harbored in the ascomycete Stachylidium bicolor. Appl. Environ. Microbiol. 84, e00660–18 (2018).
Ohshima, S. et al. Mycoavidus cysteinexigens gen. nov., sp. nov., an endohyphal bacterium isolated from a soil isolate of the fungus Mortierella elongata. Int. J. Syst. Evol. Microbiol. 66, 2052–2057 (2016).
pubmed: 26920389
doi: 10.1099/ijsem.0.000990
Uehling, J. et al. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens. Environ. Microbiol. 19, 2964–2983 (2017).
pubmed: 28076891
doi: 10.1111/1462-2920.13669
Sato, Y. Detection of betaproteobacteria inside the mycelium of the fungus Mortierella elongata. Microbes Environ. 25, 321–324 (2010).
Wu, Z. et al. Molecular characterization of microbial communities in the rhizosphere soils and roots of diseased and healthy Panax notoginseng. Antonie van. Leeuwenhoek 108, 1059–1074 (2015). 2015.
pubmed: 26296378
doi: 10.1007/s10482-015-0560-x
Vandepol, N. et al. Resolving the Mortierellaceae phylogeny through synthesis of multi-gene phylogenetics and phylogenomics. Fungal Divers. 104, 267–289 (2020).
pubmed: 33364917
pmcid: 7751987
doi: 10.1007/s13225-020-00455-5
Stoecker, K., Dorninger, C., Daims, H. & Wagner, M. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl. Environ. Microbiol. 76, 922–926 (2010).
pubmed: 19966029
doi: 10.1128/AEM.02456-09
Choi, H. M. et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development 145, dev165753 (2018).
Partida-Martinez, L. P. & Hertweck, C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437, 884–888 (2005).
pubmed: 16208371
doi: 10.1038/nature03997
Rast, P. et al. Three novel species with peptidoglycan cell walls form the new genus Lacunisphaera gen. nov. in the family Opitutaceae of the verrucomicrobial subdivision 4. Front. Microbiol. 8, 202 (2017).
pubmed: 28243229
pmcid: 5303756
doi: 10.3389/fmicb.2017.00202
Freitas, T. A. K., Li, P. E., Scholz, M. B. & Chain, P. S. Accurate read-based metagenome characterization using a hierarchical suite of unique signatures. Nucleic Acids Res. 43, e69–e69 (2015).
pubmed: 25765641
pmcid: 4446416
doi: 10.1093/nar/gkv180
Ghodsalavi, B. et al. A novel baiting microcosm approach used to identify the bacterial community associated with Penicillium bilaii hyphae in soil. PLoS ONE 12, e0187116 (2017).
pubmed: 29077733
pmcid: 5659649
doi: 10.1371/journal.pone.0187116
de Boer, W. Upscaling of fungal–bacterial interactions: from the lab to the field. Curr. Opin. Microbiol. 37, 35–41 (2017).
pubmed: 28437664
doi: 10.1016/j.mib.2017.03.007
Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).
pubmed: 25095880
pmcid: 4221126
doi: 10.1093/bioinformatics/btu531
Nilsson, R. H. et al. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).
pubmed: 30371820
doi: 10.1093/nar/gky1022
Kõljalg, U. et al. The taxon hypothesis paradigm—On the unambiguous detection and communication of taxa. Microorganisms 8, 1910 (2020).
pmcid: 7760934
doi: 10.3390/microorganisms8121910
Raja, H. A., Miller, A. N., Pearce, C. J. & Oberlies, N. H. Fungal identification using molecular tools: a primer for the natural products research community. J. Nat. Products 80, 756–770 (2017).
doi: 10.1021/acs.jnatprod.6b01085
Stackebrandt, E. and Goodfellow, M. Nucleic Acid Techniques in Bacterial Systematics (Wiley, 1991).
Muyzer, G., De Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).
pubmed: 7683183
pmcid: 202176
doi: 10.1128/aem.59.3.695-700.1993
Caporaso, J. G. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).
doi: 10.1073/pnas.1000080107
pubmed: 20534432
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
pubmed: 31341288
pmcid: 7015180
doi: 10.1038/s41587-019-0209-9
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
pubmed: 27214047
pmcid: 4927377
doi: 10.1038/nmeth.3869
Zhu, Y., Stephens, R. M., Meltzer, P. S. & Davis, S. R. SRAdb: query and use public next-generation sequencing data from within R. BMC Bioinform. 14, 19 (2013).
doi: 10.1186/1471-2105-14-19
Lo, C. C. & Chain, P. S. Rapid evaluation and quality control of next generation sequencing data with FaQCs. BMC Bioinform. 15, 1–8 (2014).
doi: 10.1186/s12859-014-0366-2
Li, P. E. et al. Enabling the democratization of the genomics revolution with a fully integrated web-based bioinformatics platform. Nucleic Acids Res. 45, 67–80 (2017).
pubmed: 27899609
doi: 10.1093/nar/gkw1027
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).
Shakya, M. et al. Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Sci. Rep. 10, 1–15 (2020).
doi: 10.1038/s41598-020-58356-1
Beliveau, B. J. et al. OligoMiner provides a rapid, flexible environment for the design of genome-scale oligonucleotide in situ hybridization probes. Proc. Natl Acad. Sci. USA 115, E2183–E2192 (2018).
pubmed: 29463736
pmcid: 5877937
doi: 10.1073/pnas.1714530115
Gans, J. D. & Wolinsky, M. Improved assay-dependent searching of nucleic acid sequence databases. Nucleic Acids Res. 36, e74–e74 (2008).
pubmed: 18515842
pmcid: 2475610
doi: 10.1093/nar/gkn301
Amann, R. I. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925 (1990).
pubmed: 2200342
pmcid: 184531
doi: 10.1128/aem.56.6.1919-1925.1990
Daims, H., Brühl, A., Amann, R., Schleifer, K. H. & Wagner, M. 1999. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444 (1999).
pubmed: 10553296
doi: 10.1016/S0723-2020(99)80053-8
Robinson, A. & Chain, P. Widespread bacterial diversity within the bacteriome of fungi supplementary information and data. figshare https://doi.org/10.6084/m9.figshare.c.5582283.v4 (2021)