Exogenous miRNAs induce post-transcriptional gene silencing in plants.
Journal
Nature plants
ISSN: 2055-0278
Titre abrégé: Nat Plants
Pays: England
ID NLM: 101651677
Informations de publication
Date de publication:
10 2021
10 2021
Historique:
received:
12
03
2021
accepted:
25
08
2021
entrez:
15
10
2021
pubmed:
16
10
2021
medline:
6
11
2021
Statut:
ppublish
Résumé
Plants seem to take up exogenous RNA that was artificially designed to target specific genes, followed by activation of the RNA interference (RNAi) machinery. It is, however, not known whether plants use RNAs themselves as signalling molecules in plant-to-plant communication, other than evidence that an exchange of small RNAs occurs between parasitic plants and their hosts. Exogenous RNAs from the environment, if taken up by some living organisms, can indeed induce RNAi. This phenomenon has been observed in nematodes and insects, and host Arabidopsis cells secrete exosome-like extracellular vesicles to deliver plant small RNAs into Botrytis cinerea. Here we show that micro-RNAs (miRNAs) produced by plants act as signalling molecules affecting gene expression in other, nearby plants. Exogenous miRNAs, such as miR156 and miR399, trigger RNAi via a mechanism requiring both AGO1 and RDR6. This emphasizes that the production of secondary small interfering RNAs is required. This evidence highlights the existence of a mechanism in which miRNAs represent signalling molecules that enable communication between plants.
Identifiants
pubmed: 34650259
doi: 10.1038/s41477-021-01005-w
pii: 10.1038/s41477-021-01005-w
pmc: PMC8516643
doi:
Substances chimiques
MicroRNAs
0
RNA, Plant
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1379-1388Commentaires et corrections
Type : CommentIn
Type : CommentIn
Type : CommentIn
Informations de copyright
© 2021. The Author(s).
Références
Bologna, N. G. & Voinnet, O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu. Rev. Plant Biol. 65, 473–503 (2014).
pubmed: 24579988
doi: 10.1146/annurev-arplant-050213-035728
Borges, F. & Martienssen, R. A. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Biol. 16, 727–741 (2015).
pubmed: 26530390
pmcid: 4948178
doi: 10.1038/nrm4085
Molnar, A., Melnyk, C. & Baulcombe, D. C. Silencing signals in plants: a long journey for small RNAs. Genome Biol. 12, 215 (2011).
pubmed: 21235831
pmcid: 3091295
doi: 10.1186/gb-2010-11-12-219
Li, S. et al. Unidirectional movement of small RNAs from shoots to roots in interspecific heterografts. Nat. Plants 7, 50–59 (2021).
pubmed: 33452489
doi: 10.1038/s41477-020-00829-2
Pant, B. D., Buhtz, A., Kehr, J. & Scheible, W. R. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J. 53, 731–738 (2008).
pubmed: 17988220
pmcid: 2268993
doi: 10.1111/j.1365-313X.2007.03363.x
Bari, R., Pant, B. D., Stitt, M. & Scheible, W. R. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 141, 988–999 (2006).
pubmed: 16679424
pmcid: 1489890
doi: 10.1104/pp.106.079707
Bhogale, S. et al. MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiol. 164, 1011–1027 (2014).
pubmed: 24351688
doi: 10.1104/pp.113.230714
Wu, G. et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750–759 (2009).
pubmed: 19703400
pmcid: 2732587
doi: 10.1016/j.cell.2009.06.031
Cai, Q., He, B., Kogel, K. H. & Jin, H. Cross-kingdom RNA trafficking and environmental RNAi — nature’s blueprint for modern crop protection strategies. Curr. Opin. Microbiol. 46, 58–64 (2018).
pubmed: 29549797
pmcid: 6499079
doi: 10.1016/j.mib.2018.02.003
Zhang, T. et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat. Plants 2, 16153 (2016).
pubmed: 27668926
doi: 10.1038/nplants.2016.153
Weiberg, A. et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342, 118–123 (2013).
pubmed: 24092744
pmcid: 4096153
doi: 10.1126/science.1239705
Cai, Q. et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360, 1126–1129 (2018).
pubmed: 29773668
pmcid: 6442475
doi: 10.1126/science.aar4142
Koch, A. et al. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog. 12, e1005901 (2016).
pubmed: 27737019
pmcid: 5063301
doi: 10.1371/journal.ppat.1005901
Mitter, N. et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3, 16207 (2017).
pubmed: 28067898
doi: 10.1038/nplants.2016.207
Shahid, S. et al. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553, 82–85 (2018).
pubmed: 29300014
doi: 10.1038/nature25027
Whangbo, J. S. & Hunter, C. P. Environmental RNA interference. Trends Genet. 24, 297–305 (2008).
pubmed: 18450316
doi: 10.1016/j.tig.2008.03.007
Wang, M., Thomas, N. & Jin, H. Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. Curr. Opin. Plant Biol. 38, 133–141 (2017).
pubmed: 28570950
pmcid: 5720367
doi: 10.1016/j.pbi.2017.05.003
Dubrovina, A. S. & Kiselev, K. V. Exogenous RNAs for gene regulation and plant resistance.Int. J. Mol. Sci. 20, 2282 (2019).
pmcid: 6539981
doi: 10.3390/ijms20092282
Manavella, P. A., Koenig, D. & Weigel, D. Plant secondary siRNA production determined by microRNA-duplex structure. Proc. Natl Acad. Sci. USA 109, 2461–2466 (2012).
pubmed: 22308502
pmcid: 3289316
doi: 10.1073/pnas.1200169109
Yu, N., Niu, Q.-W., Ng, K.-H. & Chua, N.-H. The role of miR156/SPLs modules in Arabidopsis lateral root development. Plant J. 83, 673–685 (2015).
pubmed: 26096676
doi: 10.1111/tpj.12919
Barrera-Rojas, C. H. et al. miR156-targeted SPL10 controls Arabidopsis root meristem activity and root-derived de novo shoot regeneration via cytokinin responses. J. Exp. Bot. 71, 934–950 (2020).
pubmed: 31642910
doi: 10.1093/jxb/erz475
Shao, Y. et al. OsSPL3, an SBP-domain protein, regulates crown root development in rice. Plant Cell 31, 1257–1275 (2019).
pubmed: 30940685
pmcid: 6588302
doi: 10.1105/tpc.19.00038
Marquès-Bueno, M. M. et al. A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis. Plant J. 85, 320–333 (2016).
pubmed: 26662936
pmcid: 4880041
doi: 10.1111/tpj.13099
Allen, E., Xie, Z., Gustafson, A. M. & Carrington, J. C. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221 (2005).
pubmed: 15851028
doi: 10.1016/j.cell.2005.04.004
Cuperus, J. T. et al. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat. Struct. Mol. Biol. 17, 997–1003 (2010).
pubmed: 20562854
pmcid: 2916640
doi: 10.1038/nsmb.1866
Kurihara, Y., Takashi, Y. & Watanabe, Y. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12, 206–212 (2006).
pubmed: 16428603
pmcid: 1370900
doi: 10.1261/rna.2146906
Gordon, K. H. J. & Waterhouse, P. M. RNAi for insect-proof plants. Nat. Biotechnol. 25, 1231–1232 (2007).
pubmed: 17989682
doi: 10.1038/nbt1107-1231
Worrall, E. A. et al. Exogenous application of RNAi-inducing double-stranded RNA inhibits aphid-mediated transmission of a plant virus. Front. Plant Sci. 10, 265 (2019).
pubmed: 30930914
pmcid: 6429036
doi: 10.3389/fpls.2019.00265
Hua, C., Zhao, J. H. & Guo, H. S. Trans-kingdom RNA silencing in plant–fungal pathogen interactions. Mol. Plant 11, 235–244 (2018).
pubmed: 29229568
doi: 10.1016/j.molp.2017.12.001
Wang, M. et al. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants 2, 16151 (2016).
pubmed: 27643635
pmcid: 5040644
doi: 10.1038/nplants.2016.151
Dalakouras, A. et al. Genetically modified organism-free RNA interference: exogenous application of RNA molecules in plants. Plant Physiol. 182, 38–50 (2020).
pubmed: 31285292
doi: 10.1104/pp.19.00570
Winston, W. M., Sutherlin, M., Wright, A. J., Feinberg, E. H. & Hunter, C. P. Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc. Natl Acad. Sci. USA 104, 10565–10570 (2007).
pubmed: 17563372
pmcid: 1965553
doi: 10.1073/pnas.0611282104
Schwarzenbach, H. & Gahan, P. B. MicroRNA shuttle from cell-to-cell by exosomes and its impact in cancer. Non-coding RNA 5 (2019).
Voinnet, O. Non-cell autonomous RNA silencing. FEBS Lett. 579, 5858–5871 (2005).
pubmed: 16242131
doi: 10.1016/j.febslet.2005.09.039
Subramanian, S. Little RNAs go a long way: long-distance signaling by microRNAs.Mol. Plant 12, 18–20 (2019).
pubmed: 30543993
doi: 10.1016/j.molp.2018.12.001
Pyott, D. E. & Molnar, A. Going mobile: non-cell-autonomous small RNAs shape the genetic landscape of plants. Plant Biotechnol. J. 13, 306–318 (2015).
pubmed: 25756494
doi: 10.1111/pbi.12353
Dalakouras, A. et al. Delivery of hairpin RNAs and small RNAs into woody and herbaceous plants by trunk injection and petiole absorption. Front. Plant Sci. 9, 1253 (2018).
pubmed: 30210521
pmcid: 6120046
doi: 10.3389/fpls.2018.01253
Buhtz, A., Springer, F., Chappell, L., Baulcombe, D. C. & Kehr, J. Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J. 53, 739–749 (2008).
pubmed: 18005229
doi: 10.1111/j.1365-313X.2007.03368.x
Morel, J. B. et al. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14, 629–639 (2002).
pubmed: 11910010
pmcid: 150585
doi: 10.1105/tpc.010358
Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H. L. & Poethig, R. S. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev. 18, 2368–2379 (2004).
pubmed: 15466488
pmcid: 522987
doi: 10.1101/gad.1231804
Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, e104 (2004).
pubmed: 15024409
pmcid: 350667
doi: 10.1371/journal.pbio.0020104
Gibeaut, D. M., Hulett, J., Cramer, G. R. & Seemann, J. R. Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions. Plant Physiol. 115, 317–319 (1997).
pubmed: 9342857
pmcid: 158488
doi: 10.1104/pp.115.2.317
Schwab, R., Ossowski, S., Riester, M., Warthmann, N. & Weigel, D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18, 1121–1133 (2006).
pubmed: 16531494
pmcid: 1456875
doi: 10.1105/tpc.105.039834
Karimi, M., Inzé, D. & Depicker, A. GATEWAY
pubmed: 11992820
doi: 10.1016/S1360-1385(02)02251-3
Iacopino, S. et al. A synthetic oxygen sensor for plants based on animal hypoxia signaling. Plant Physiol. 179, 986–1000 (2019).
pubmed: 30459266
doi: 10.1104/pp.18.01003
Perata, P., Matsukura, C., Vernieri, P. & Yamaguchi, J. Sugar repression of a gibberellin-dependent signaling pathway in barley embryos. Plant Cell 9, 2197–2208 (1997).
pubmed: 12237356
pmcid: 157068
doi: 10.2307/3870579
Chen, C. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179–e179 (2005).
pubmed: 16314309
pmcid: 1292995
doi: 10.1093/nar/gni178