High-Throughput Quantitation of Yeast uORF Regulatory Impacts Using FACS-uORF.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2022
Historique:
entrez: 25 10 2021
pubmed: 26 10 2021
medline: 15 12 2021
Statut: ppublish

Résumé

Eukaryotic upstream Open Reading Frames (uORFs) are short translated regions found in many transcript leaders (Barbosa et al. PLoS Genet 9:e1003529, 2013; Zhang et al. Trends Biochem Sci 44:782-794, 2019). Modern transcript annotations and ribosome profiling studies have found thousands of AUG-initiated uORFs, and many more uORFs initiated by near-cognate codons (CUG, GUG, UUG, etc.). Their translation generally decreases the expression of the main encoded protein by preventing ribosomes from reaching the main ORF of each gene, and by inducing nonsense mediated decay (NMD) through premature termination. Under many cellular stresses, uORF containing transcripts are de-repressed due to decreased translation initiation (Young et al. J Biol Chem 291:16927-16935, 2016). Traditional experimental evaluation of uORFs involves comparing expression from matched uORF-containing and start-codon mutated transcript leader reporter plasmids. This tedious process has precluded analysis of large numbers of uORFs. We recently used FACS-uORF to simultaneously assay thousands of yeast uORFs in order to evaluate the impact of codon usage on their functions (Lin et al. Nucleic Acids Res 2:1-10, 2019). Here, we provide a step-by-step protocol for this assay.

Identifiants

pubmed: 34694618
doi: 10.1007/978-1-0716-1851-6_18
pmc: PMC10290498
mid: NIHMS1906007
doi:

Substances chimiques

5' Untranslated Regions 0
Codon 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

331-351

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM121895
Pays : United States

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):E2792-801
pubmed: 23832786
Genome Biol. 2018 Jun 1;19(1):71
pubmed: 29859120
Nucleic Acids Res. 2018 Apr 20;46(7):3326-3338
pubmed: 29562350
J Biol Chem. 2016 Aug 12;291(33):16927-35
pubmed: 27358398
PLoS Genet. 2013;9(8):e1003529
pubmed: 23950723
Nat Genet. 2017 Jun;49(6):848-855
pubmed: 28416821
Trends Biochem Sci. 2019 Sep;44(9):782-794
pubmed: 31003826
Nucleic Acids Res. 2019 Sep 26;47(17):9358-9367
pubmed: 31392980
Science. 2016 Jun 17;352(6292):1413-6
pubmed: 27313038
Nat Biotechnol. 2012 May 20;30(6):521-30
pubmed: 22609971
Nat Biotechnol. 2019 Jul;37(7):803-809
pubmed: 31267113
Nat Biotechnol. 2012 Feb 26;30(3):271-7
pubmed: 22371084
Science. 2016 Jan 15;351(6270):
pubmed: 26816383
Mol Cell. 2018 Sep 20;71(6):1012-1026.e3
pubmed: 30174293
Genome Res. 2017 Dec;27(12):2015-2024
pubmed: 29097404

Auteurs

Gemma E May (GE)

Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.

C Joel McManus (CJ)

Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA. mcmanus@andrew.cmu.edu.
Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA. mcmanus@andrew.cmu.edu.

Articles similaires

Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins
Metabolic Networks and Pathways Saccharomyces cerevisiae Computational Biology Synthetic Biology Computer Simulation

Classifications MeSH