Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement.
Journal
Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
received:
01
02
2021
accepted:
16
08
2021
pubmed:
3
11
2021
medline:
6
4
2022
entrez:
2
11
2021
Statut:
ppublish
Résumé
Aegilops tauschii, the diploid wild progenitor of the D subgenome of bread wheat, is a reservoir of genetic diversity for improving bread wheat performance and environmental resilience. Here we sequenced 242 Ae. tauschii accessions and compared them to the wheat D subgenome to characterize genomic diversity. We found that a rare lineage of Ae. tauschii geographically restricted to present-day Georgia contributed to the wheat D subgenome in the independent hybridizations that gave rise to modern bread wheat. Through k-mer-based association mapping, we identified discrete genomic regions with candidate genes for disease and pest resistance and demonstrated their functional transfer into wheat by transgenesis and wide crossing, including the generation of a library of hexaploids incorporating diverse Ae. tauschii genomes. Exploiting the genomic diversity of the Ae. tauschii ancestral diploid genome permits rapid trait discovery and functional genetic validation in a hexaploid background amenable to breeding.
Identifiants
pubmed: 34725503
doi: 10.1038/s41587-021-01058-4
pii: 10.1038/s41587-021-01058-4
pmc: PMC8926922
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
422-431Subventions
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/P016855/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/N019113/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BBS/E/J/000PR8000
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BBS/E/T/000PR9817
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BBS/E/T/000PR9814
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/I002561/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/PPR1740/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/M011216/1
Pays : United Kingdom
Informations de copyright
© 2021. The Author(s).
Références
Dubcovsky, J. & Dvorak, J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862–1866 (2007).
pubmed: 17600208
pmcid: 4737438
doi: 10.1126/science.1143986
Pont, C. et al. Tracing the ancestry of modern bread wheats. Nat. Genet. 51, 905–911 (2019).
pubmed: 31043760
doi: 10.1038/s41588-019-0393-z
Marcussen, T. et al. Ancient hybridizations among the ancestral genomes of bread wheat. Science 345, 1250092 (2014).
pubmed: 25035499
doi: 10.1126/science.1250092
Huang, S. et al. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl Acad. Sci. USA 99, 8133–8138 (2002).
pubmed: 12060759
pmcid: 123033
doi: 10.1073/pnas.072223799
Zohary, D., Hopf, M. & Weiss, E. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin 4th edn (Oxford Scholarship Online, 2012).
Giles, R. J. & Brown, T. A. GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats. Theor. Appl. Genet. 112, 1563–1572 (2006).
pubmed: 16568284
doi: 10.1007/s00122-006-0259-5
Zhou, Y. et al. Triticum population sequencing provides insights into wheat adaptation. Nat. Genet. 52, 1412–1422 (2020).
pubmed: 33106631
doi: 10.1038/s41588-020-00722-w
Wang, J. et al. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol. 198, 925–937 (2013).
pubmed: 23374069
doi: 10.1111/nph.12164
Li, A., Liu, D., Yang, W., Kishii, M. & Mao, L. Synthetic hexaploid wheat: yesterday, today, and tomorrow. Engineering 4, 552–558 (2018).
doi: 10.1016/j.eng.2018.07.001
Gill, B. S. & Raupp, W. J. Direct genetic transfers from Aegilops squarrosa L. to hexaploid wheat. Crop Sci. 27, 445–450 (1987).
doi: 10.2135/cropsci1987.0011183X002700030004x
Gill, B. S. et al. Wheat Genetics Resource Center: the first 25 years. Adv. Agron. 89, 73–136 (2006).
doi: 10.1016/S0065-2113(05)89002-9
Paux, E., Sourdille, P., Mackay, I. & Feuillet, C. Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol. Adv. 30, 1071–1088 (2012).
pubmed: 21989506
doi: 10.1016/j.biotechadv.2011.09.015
Watson, A. et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 4, 23–29 (2018).
pubmed: 29292376
doi: 10.1038/s41477-017-0083-8
Luo, M. C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498–502 (2017).
pubmed: 29143815
pmcid: 7416625
doi: 10.1038/nature24486
Singh, N. et al. Genomic analysis confirms population structure and identifies inter-lineage hybrids in Aegilops tauschii. Front. Plant Sci. 10, 9 (2019).
Mizuno, N., Yamasaki, M., Matsuoka, Y., Kawahara, T. & Takumi, S. Population structure of wild wheat D-genome progenitor Aegilops tauschii Coss.: implications for intraspecific lineage diversification and evolution of common wheat. Mol. Ecol. 19, 999–1013 (2010).
pubmed: 20149088
doi: 10.1111/j.1365-294X.2010.04537.x
Cheng, H. et al. Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biol. 20, 136 (2019).
pubmed: 31300020
pmcid: 6624984
doi: 10.1186/s13059-019-1744-x
Matsuoka, Y. et al. Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species. PLoS ONE 8, e68310 (2013).
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
pubmed: 10835412
pmcid: 1461096
doi: 10.1093/genetics/155.2.945
Puechmaille, S. J. The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627 (2016).
pubmed: 26856252
doi: 10.1111/1755-0998.12512
Walkowiak, S. et al. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277–283 (2020).
Arora, S. et al. Resistance gene discovery and cloning by sequence capture and association genetics. Nat. Biotechnol. 37, 139–143 (2019).
pubmed: 30718880
doi: 10.1038/s41587-018-0007-9
Olson, E. L. et al. Simultaneous transfer, introgression, and genomic localization of genes for resistance to stem rust race TTKSK (Ug99) from Aegilops tauschii to wheat. Theor. Appl. Genet. 126, 1179–1188 (2013).
pubmed: 23377571
doi: 10.1007/s00122-013-2045-5
Yan, L. et al. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl Acad. Sci. USA 103, 19581–19586 (2006).
pubmed: 17158798
pmcid: 1748268
doi: 10.1073/pnas.0607142103
Bonnin, I. et al. FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor. Appl. Genet. 116, 383–394 (2008).
pubmed: 18040656
doi: 10.1007/s00122-007-0676-0
Dixon, L. E. et al. Developmental responses of bread wheat to changes in ambient temperature following deletion of a locus that includes FLOWERING LOCUS T1. Plant. Cell Environ. 41, 1715–1725 (2018).
pubmed: 29314053
pmcid: 6033019
doi: 10.1111/pce.13130
Pshenichnikova, T. A. et al. Quantitative characteristics of pubescence in wheat (Triticum aestivum L.) are associated with photosynthetic parameters under conditions of normal and limited water supply. Planta 249, 839–847 (2019).
pubmed: 30446814
doi: 10.1007/s00425-018-3049-9
Glas, J. J. et al. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int. J. Mol. Sci. 13, 17077–17103 (2012).
pubmed: 23235331
pmcid: 3546740
doi: 10.3390/ijms131217077
Navia, D. et al. Wheat curl mite, Aceria tosichella, and transmitted viruses: an expanding pest complex affecting cereal crops. Exp. Appl. Acarol. 59, 95–143 (2013).
pubmed: 23179064
doi: 10.1007/s10493-012-9633-y
Wan, H., Yang, Y., Li, J., Zhang, Z. & Yang, W. Mapping a major QTL for hairy leaf sheath introgressed from Aegilops tauschii and its association with enhanced grain yield in bread wheat. Euphytica 205, 275–285 (2015).
doi: 10.1007/s10681-015-1457-5
Jakoby, M. J. et al. Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106. Plant Physiol. 148, 1583–1602 (2008).
pubmed: 18805951
pmcid: 2577251
doi: 10.1104/pp.108.126979
Claeys, H. et al. Control of meristem determinacy by trehalose 6-phosphate phosphatases is uncoupled from enzymatic activity. Nat. Plants 5, 352–357 (2019).
pubmed: 30936436
pmcid: 7444751
doi: 10.1038/s41477-019-0394-z
Koppolu, R. et al. Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. Proc. Natl Acad. Sci. USA 110, 13198–13203 (2013).
pubmed: 23878219
pmcid: 3740847
doi: 10.1073/pnas.1221950110
Klymiuk, V. et al. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat. Commun. 9, 3735 (2018).
pubmed: 30282993
pmcid: 6170490
doi: 10.1038/s41467-018-06138-9
Brueggeman, R. et al. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc. Natl Acad. Sci. USA 99, 9328–9333 (2002).
pubmed: 12077318
pmcid: 123140
doi: 10.1073/pnas.142284999
Chen, S. et al. Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. New Phytol. 225, 948–959 (2020).
pubmed: 31487050
doi: 10.1111/nph.16169
Lu, P. et al. A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat. Commun. 11, 680 (2020).
pubmed: 32015344
pmcid: 6997164
doi: 10.1038/s41467-020-14294-0
Malik, R., Brown-Guedira, G. L., Smith, C. M., Harvey, T. L. & Gill, B. S. Genetic mapping of wheat curl mite resistance genes Cmc3 and Cmc4 in common wheat. Crop Sci. 43, 644–650 (2003).
Dhakal, S. et al. Mapping and KASP marker development for wheat curl mite resistance in ‘TAM 112’ wheat using linkage and association analysis. Mol. Breed. 38, 119 (2018).
doi: 10.1007/s11032-018-0879-x
Zhao, J. et al. Development of single nucleotide polymorphism markers for the wheat curl mite resistance gene Cmc4. Crop Sci. 59, 1567–1575 (2019).
doi: 10.2135/cropsci2018.11.0695
Smith, C. M. & Clement, S. L. Molecular bases of plant resistance to arthropods. Annu. Rev. Entomol. 57, 309–328 (2012).
pubmed: 21910639
doi: 10.1146/annurev-ento-120710-100642
Cox, T. S. et al. Registration of KS96WGRC40 hard red winter wheat germplasm resistant to wheat curl mite, Stagnospora leaf blotch, and Septoria leaf blotch. Crop Sci. 39, 597–597 (1999).
doi: 10.2135/cropsci1999.0011183X003900020070x
Rudd, J. C. et al. ‘TAM 112’ wheat, resistant to greenbug and wheat curl mite and adapted to the dryland production system in the Southern High Plains. J. Plant Regist. 8, 291–297 (2014).
doi: 10.3198/jpr2014.03.0016crc
Talbert, L. E., Smith, L. Y. & Blake, N. K. More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA. Genome 41, 402–407 (1998).
doi: 10.1139/g98-037
Dvorak, J., Luo, M. C. & Yang, Z.-L. Genetic evidence on the origin of Triticum aestivum L. In The Origins of Agriculture and Crop Domestication, Proceedings of the Harlan Symposium, Aleppo, Syria (eds Damania, A. B. et al) 235–251 (ICARDA, 1997).
Delorean, E. et al. High molecular weight glutenin gene diversity in Aegilops tauschii demonstrates unique origin of superior wheat quality. Commun. Biol. https://doi.org/10.1038/s42003-021-02563-7 (2021).
Alonso-Blanco, C. et al. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166, 481–491 (2016).
doi: 10.1016/j.cell.2016.05.063
Uauy, C., Wulff, B. B. H. & Dubcovsky, J. Combining traditional mutagenesis with new high-throughput sequencing and genome editing to reveal hidden variation in polyploid wheat. Annu. Rev. Genet. 51, 435–454 (2017).
McFadden, E. S. & Sears, E. R. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37, 81–89 (1946).
pubmed: 20985728
doi: 10.1093/oxfordjournals.jhered.a105590
Das, M. K., Bai, G., Mujeeb-Kazi, A. & Rajaram, S. Genetic diversity among synthetic hexaploid wheat accessions (Triticum aestivum) with resistance to several fungal diseases. Genet. Resour. Crop Evol. 63, 1285–1296 (2016).
doi: 10.1007/s10722-015-0312-9
International Wheat Genome Sequencing Consortium (IWGSC) et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191 (2018).
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
pubmed: 25609793
doi: 10.1093/bioinformatics/btv033
Monat, C. et al. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 20, 284 (2019).
pubmed: 31849336
pmcid: 6918601
doi: 10.1186/s13059-019-1899-5
Pendleton, M. et al. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat. Methods 12, 780–786 (2015).
pubmed: 26121404
pmcid: 4646949
doi: 10.1038/nmeth.3454
Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).
pubmed: 28298431
pmcid: 5411767
doi: 10.1101/gr.215087.116
Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).
pubmed: 25409509
pmcid: 4237348
doi: 10.1371/journal.pone.0112963
Lewis, C. M. et al. Potential for re-emergence of wheat stem rust in the United Kingdom. Commun. Biol. 1, 13 (2018).
Kangara, N. et al. Mutagenesis of Puccinia graminis f. sp. tritici and selection of gain-of-virulence mutants. Front. Plant Sci. 11, 570180 (2020).
pubmed: 33072145
pmcid: 7533539
doi: 10.3389/fpls.2020.570180
Ghosh, S. et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat. Protoc. 13, 2944–2963 (2018).
pubmed: 30446746
doi: 10.1038/s41596-018-0072-z
Zadoks, J. C., Chang, T. T. & Konzak, C. F. A decimal code for the growth stages of cereals. Weed Res. 14, 415–421 (1974).
doi: 10.1111/j.1365-3180.1974.tb01084.x
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
Covarrubias-Pazaran, G. Genome-assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11, e0156744 (2016).
Wicker, T. et al. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nat. Genet. 45, 1092–1096 (2013).
pubmed: 23852167
doi: 10.1038/ng.2704
Sánchez-Martín, J. et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 17, 221 (2016).
pubmed: 27795210
pmcid: 5087116
doi: 10.1186/s13059-016-1082-1
Aguirre-Rojas, L. et al. Resistance to wheat curl mite in arthropod-resistant rye-wheat translocation lines. Agronomy 7, 74 (2017).
doi: 10.3390/agronomy7040074
Chuang, W. P. et al. Wheat genotypes with combined resistance to wheat curl mite, wheat streak mosaic virus, wheat mosaic virus, and Triticum mosaic virus. J. Econ. Entomol. 110, 711–718 (2017).
pubmed: 28087646
Harvey, T. L., Seifers, D. L., Martin, T. J., Brown-Guedira, G. & Gill, B. S. Survival of wheat curl mites on different sources of resistance in wheat. Crop Sci. 39, 1887–1889 (1999).
doi: 10.2135/cropsci1999.3961887x
Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).
Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).
pubmed: 21217122
pmcid: 3051319
doi: 10.1093/bioinformatics/btr011
Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
doi: 10.1007/s12686-011-9548-7
Jakobsson, M. & Rosenberg, N. A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).
pubmed: 17485429
doi: 10.1093/bioinformatics/btm233
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).
pubmed: 25684545
pmcid: 4534335
doi: 10.1111/1755-0998.12387
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
pubmed: 21653522
pmcid: 3137218
doi: 10.1093/bioinformatics/btr330
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242
pmcid: 6137996
doi: 10.1093/bioinformatics/bty191
Zhang, C., Dong, S. S., Xu, J. Y., He, W. M. & Yang, T. L. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786–1788 (2019).
pubmed: 30321304
doi: 10.1093/bioinformatics/bty875