Prevalence of Pathogenic and Potentially Pathogenic Inborn Error of Immunity Associated Variants in Children with Severe Sepsis.


Journal

Journal of clinical immunology
ISSN: 1573-2592
Titre abrégé: J Clin Immunol
Pays: Netherlands
ID NLM: 8102137

Informations de publication

Date de publication:
02 2022
Historique:
received: 27 09 2021
accepted: 15 11 2021
pubmed: 2 1 2022
medline: 5 3 2022
entrez: 1 1 2022
Statut: ppublish

Résumé

Our understanding of inborn errors of immunity is increasing; however, their contribution to pediatric sepsis is unknown. We used whole-exome sequencing (WES) to characterize variants in genes related to monogenic immunologic disorders in 330 children admitted to intensive care for severe sepsis. We defined candidate variants as rare variants classified as pathogenic or potentially pathogenic in QIAGEN's Human Gene Mutation Database or novel null variants in a disease-consistent inheritance pattern. We investigated variant correlation with infection and inflammatory phenotype. More than one in two children overall and three of four African American children had immunodeficiency-associated variants. Children with variants had increased odds of isolating a blood or urinary pathogen (blood: OR 2.82, 95% CI: 1.12-7.10, p = 0.023, urine: OR: 8.23, 95% CI: 1.06-64.11, p = 0.016) and demonstrating increased inflammation with hyperferritinemia (ferritin [Formula: see text] ng/mL, OR: 2.16, 95% CI: 1.28-3.66, p = 0.004), lymphopenia (lymphocyte count < 1000/µL, OR: 1.66, 95% CI: 1.06 - 2.60, p = 0.027), thrombocytopenia (platelet count < 150,000/µL, OR: 1.76, 95% CI: 1.12-2.76, p = 0.013), and CRP greater than 10 mg/dl (OR: 1.71, 95% CI: 1.10-2.68, p = 0.017). They also had increased odds of requiring extracorporeal membrane oxygenation (ECMO, OR: 4.19, 95% CI: 1.21-14.5, p = 0.019). Herein, we describe the genetic findings in this severe pediatric sepsis cohort and their microbiologic and immunologic significance, providing evidence for the phenotypic effect of these variants and rationale for screening children with life-threatening infections for potential inborn errors of immunity.

Identifiants

pubmed: 34973142
doi: 10.1007/s10875-021-01183-4
pii: 10.1007/s10875-021-01183-4
pmc: PMC8720168
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

350-364

Subventions

Organisme : NICHD NIH HHS
ID : RL1 HD107777
Pays : United States
Organisme : NIH HHS
ID : U10HD050012
Pays : United States
Organisme : NIH HHS
ID : U10HD049983
Pays : United States
Organisme : NIH HHS
ID : U10HD063108
Pays : United States
Organisme : NICHD NIH HHS
ID : RL1 HD107779
Pays : United States
Organisme : NICHD NIH HHS
ID : U10 HD049983
Pays : United States
Organisme : NIH HHS
ID : U10HD049981
Pays : United States
Organisme : NICHD NIH HHS
ID : U01 HD049934
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM108618
Pays : United States
Organisme : NIH HHS
ID : U10HD050096
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01GM108618
Pays : United States
Organisme : NHGRI NIH HHS
ID : K08 HG010490
Pays : United States
Organisme : NICHD NIH HHS
ID : 5U01HD049934-10S1
Pays : United States
Organisme : NIAID NIH HHS
ID : L30 AI147146
Pays : United States
Organisme : NIAID NIH HHS
ID : L30AI147146
Pays : United States
Organisme : NICHD NIH HHS
ID : K12HD047349
Pays : United States
Organisme : NICHD NIH HHS
ID : K12 HD047349
Pays : United States
Organisme : NIH HHS
ID : U10HD63106
Pays : United States
Organisme : NIH HHS
ID : U01HD049934
Pays : United States
Organisme : NIH HHS
ID : U10HD063114
Pays : United States

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2021. The Author(s).

Références

Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. The Lancet. 2020;395:200–11.
doi: 10.1016/S0140-6736(19)32989-7
Casanova J-L. Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc Natl Acad Sci. 2015;112:201521651.
Schulert GS, Zhang M, Fall N, Husami A, Kissell D, Hanosh A, et al. Whole-Exome Sequencing Reveals Mutations in Genes Linked to Hemophagocytic Lymphohistiocytosis and Macrophage Activation Syndrome in Fatal Cases of H1N1 Influenza. J Infect Dis. 2016;213:1180–8. https://doi.org/10.1093/infdis/jiv550 .
doi: 10.1093/infdis/jiv550 pubmed: 26597256
Gaschignard J, Levy C, Chrabieh M, Boisson B, Bost-Bru C, Dauger S, et al. Invasive pneumococcal disease in children can reveal a primary immunodeficiency. Clin Infect Dis. 2014;59:244–51.
doi: 10.1093/cid/ciu274
Asgari S, McLaren PJ, Peake J, Wong M, Wong R, Bartha I, et al. Exome sequencing reveals primary immunodeficiencies in children with community-acquired Pseudomonas aeruginosa sepsis. Front immunol. 2016;7:357. https://doi.org/10.3389/fimmu.2016.00357 .
doi: 10.3389/fimmu.2016.00357 pubmed: 27703454 pmcid: 5028722
van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T, Kersten S, et al. Presence of genetic variants among young men with severe COVID-19. JAMA. 2020;324(7):663–73.
doi: 10.1001/jama.2020.13719
Meyts I, Bucciol G, Quinti I, Neven B, Fischer A, Seoane E, et al. Coronavirus disease 2019 in patients with inborn errors of immunity: an international study. J Allergy Clin Immunol. 2021;147:520–31.
doi: 10.1016/j.jaci.2020.09.010
Borghesi A, Trück J, Asgari S, Sancho-Shimizu V, Agyeman PKA, Bellos E, et al. Whole-exome sequencing for the identification of rare variants in primary immunodeficiency genes in children with sepsis: a prospective, population-based cohort study. Clin Infect Dis. 2020;71:E614–23.
doi: 10.1093/cid/ciaa290
Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020;40:24–64.
doi: 10.1007/s10875-019-00737-x
Taeubner J, Wieczorek D, Yasin L, Brozou T, Borkhardt A, Kuhlen M. Penetrance and expressivity in inherited cancer predisposing syndromes. Trends Cancer. 2018;4:718–28.
doi: 10.1016/j.trecan.2018.09.002
Petrikin JE, Cakici JA, Clark MM, Willig LK, Sweeney NM, Farrow EG, et al. The NSIGHT1-randomized controlled trial: rapid whole-genome sequencing for accelerated etiologic diagnosis in critically ill infants. NPJ Genom Med. 2018;3:6. https://doi.org/10.1038/s41525-018-0045-8 .
doi: 10.1038/s41525-018-0045-8 pubmed: 29449963 pmcid: 5807510
Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Alnadi NA, et al. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med. 2012. https://doi.org/10.1126/scitranslmed.3004041 .
doi: 10.1126/scitranslmed.3004041 pubmed: 23035047 pmcid: 4283791
Mestek-Boukhibar L, Clement E, Jones WD, Drury S, Ocaka L, Gagunashvili A, et al. Rapid Paediatric Sequencing (RaPS): comprehensive real-life workflow for rapid diagnosis of critically ill children. J Med Genet. 2018;11:721–8. https://doi.org/10.1136/jmedgenet-2018-105396 .
doi: 10.1136/jmedgenet-2018-105396
Sanford EF, Clark MM, Farnaes L, Williams MR, Perry JC, Ingulli EG, et al. Rapid whole genome sequencing has clinical utility in children in the PICU. Pediatr Crit Care Med. 2019. https://doi.org/10.1097/PCC.0000000000002056 .
doi: 10.1097/PCC.0000000000002056 pubmed: 31246743 pmcid: 6832787
Doughty L, Clark RSB, Kaplan SS, Sasser H, Carcillo J. sFas and sFas ligand and pediatric sepsis-induced multiple organ failure syndrome. Pediatr Res. 2002. https://doi.org/10.1203/00006450-200212000-00018 .
doi: 10.1203/00006450-200212000-00018 pubmed: 12438671
Park KJ, Lee W, Chun S, Min WK. The frequency of discordant variant classification in the human gene mutation database: a comparison of the American College of Medical Genetics and Genomics Guidelines and ClinVar. Lab Med. 2021;52:250–9.
doi: 10.1093/labmed/lmaa072
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015. https://doi.org/10.1038/gim.2015.30 .
doi: 10.1038/gim.2015.30 pubmed: 25834946 pmcid: 4544753
Felmet KA, Hall MW, Clark RSB, Jaffe R, Carcillo JA. Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure. J Immunol. 2005;174:3765–72.
doi: 10.4049/jimmunol.174.6.3765
Bennett TD, Hayward KN, Farris RW, Ringold S, Wallace CA, Brogan TV. Very high serum ferritin levels are associated with increased mortality and critical care in pediatric patients. Pediatr Crit Care Med. 2011;12:e233–6.
doi: 10.1097/PCC.0b013e31820abca8
Sekhon SS, Roy V. Thrombocytopenia in adults: a practical approach to evaluation and management. South Med J. 2006;99:491–8.
doi: 10.1097/01.smj.0000209275.75045.d4
Lobo SMA, Lobo FRM, Peres Bota D, Lopes-Ferreira F, Soliman HM, Mélot C, et al. C-reactive protein levels correlate with mortality and organ failure in critically ill patients. Chest. 2003;123:2043–9.
doi: 10.1378/chest.123.6.2043
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.
doi: 10.1038/s41586-020-2308-7
Osborne AJ, Breno M, Borsa NG, Bu F, Frémeaux-Bacchi V, Gale DP, et al. Statistical validation of rare complement variants provides insights into the molecular basis of atypical hemolytic uremic syndrome and C3 glomerulopathy. J Immunol. 2018;200:2464–78.
doi: 10.4049/jimmunol.1701695
Geerlings MJ, Volokhina EB, de Jong EK, van de Kar N, Pauper M, Hoyng CB, et al. Genotype-phenotype correlations of low-frequency variants in the complement system in renal disease and age-related macular degeneration. Clin Genet. 2018;94:330–8.
doi: 10.1111/cge.13392
Besbas N, Gulhan B, Soylemezoglu O, Ozcakar ZB, Korkmaz E, Hayran M, et al. Turkish pediatric atypical hemolytic uremic syndrome registry: initial analysis of 146 patients. BMC Nephrol. 2017;18:6.
doi: 10.1186/s12882-016-0420-6
Fidalgo T, Martinho P, Pinto CS, Oliveira AC, Salvado R, Borràs N, et al. Combined study of ADAMTS13 and complement genes in the diagnosis of thrombotic microangiopathies using next-generation sequencing. Res Pract Thromb Haemost. 2017;1:69–80.
doi: 10.1002/rth2.12016
Schramm EC, Roumenina LT, Rybkine T, Chauvet S, Vieira-Martins P, Hue C, et al. Mapping interactions between complement C3 and regulators using mutations in atypical hemolytic uremic syndrome. Blood. 2015. https://doi.org/10.1182/blood-2014-10-609073 .
doi: 10.1182/blood-2014-10-609073 pubmed: 25608561 pmcid: 4392009
Chapin J, Eyler S, Smith R, Tsai H-M, Laurence J. Complement factor H mutations are present in ADAMTS13-deficient, ticlopidine-associated thrombotic microangiopathies. Blood. 2013;121:4012–3.
doi: 10.1182/blood-2013-03-487694
Zhang T, Lu J, Liang S, Chen D, Zhang H, Zeng C, et al. Comprehensive analysis of complement genes in patients with atypical hemolytic uremic syndrome. Am J Nephrol. 2016;43:160–9.
doi: 10.1159/000445127
Mørk N, Kofod-Olsen E, Sørensen KB, Bach E, Ørntoft TF, Østergaard L, et al. Mutations in the TLR3 signaling pathway and beyond in adult patients with herpes simplex encephalitis. Genes Immun. 2015;16:552–66.
doi: 10.1038/gene.2015.46
Nedjai B, Hitman GA, Church LD, Minden K, Whiteford ML, McKee S, et al. Differential cytokine secretion results from p65 and c-Rel NF-κB subunit signaling in peripheral blood mononuclear cells of TNF receptor-associated periodic syndrome patients. Cell Immunol. 2011;268:55–9.
doi: 10.1016/j.cellimm.2011.02.007
Kernan KF, Ghaloul-Gonzalez L, Shakoory B, Kellum JA, Angus DC, Carcillo JA. Adults with septic shock and extreme hyperferritinemia exhibit pathogenic immune variation. Genes Immun. 2019. https://doi.org/10.1038/s41435-018-0030-3 .
doi: 10.1038/s41435-018-0030-3 pubmed: 29977033
Davila S, Wright VJ, Khor CC, Sim KS, Binder A, Breunis WB, et al. Genome-wide association study identifies variants in the CFH region associated with host susceptibility to meningococcal disease. Nat Genet. 2010;42:772–6.
doi: 10.1038/ng.640
Van Den Broek B, Van Der Flier M, De Groot R, De Jonge MI, Langereis JD. Common genetic variants in the complement system and their potential link with disease susceptibility and outcome of invasive bacterial infection. J Innate Immun. 2020;12:131–41.
doi: 10.1159/000500545
Bu F, Borsa N, Gianluigi A, Smith RJH. Familial atypical hemolytic uremic syndrome: a review of its genetic and clinical aspects. Clin Dev Immunol. 2012;2012:370426.
doi: 10.1155/2012/370426
Tang L, Wang HF, Lu X, Jian XR, Jin B, Zheng H, et al. Common genetic risk factors for venous thrombosis in the Chinese population. Am J Hum Genet. 2013;92:177–87.
doi: 10.1016/j.ajhg.2012.12.013
Mohlin FC, Gros P, Mercier E, Gris JCR, Blom AM. Analysis of C3 gene variants in patients with idiopathic recurrent spontaneous pregnancy loss. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.01813 .
doi: 10.3389/fimmu.2018.01813 pubmed: 30405598 pmcid: 6207586
Fang CJ, Fremeaux-Bacchi V, Liszewski MK, Pianetti G, Noris M, Goodship THJ, et al. Membrane cofactor protein mutations in atypical hemolytic uremic syndrome (aHUS), fatal Stx-HUS, C3 glomerulonephritis, and the HELLP syndrome. Blood. 2008;111:624–32.
doi: 10.1182/blood-2007-04-084533
Crovetto F, Borsa N, Acaia B, Nishimura C, Frees K, Smith RJH, et al. The genetics of the alternative pathway of complement in the pathogenesis of HELLP syndrome. J Matern Fetal Neonatal Med. 2012;25:2322–5.
doi: 10.3109/14767058.2012.694923
Liu J, Tan Y, Zhang J, Zou L, Deng G, Xu X, et al. C5aR, TNFa and FGL2 contribute to coagulation and complement activation in virus-induced fulminant hepatitis. J Hepatol. 2015;62:354–62.
doi: 10.1016/j.jhep.2014.08.050
Verma D, Särndahl E, Andersson H, Eriksson P, Fredrikson M, Jönsson J-I, et al. The Q705K polymorphism in NLRP3 is a gain-of-function alteration leading to excessive interleukin-1β and IL-18 production. PloS one. 2012;7:e34977.
doi: 10.1371/journal.pone.0034977
Aksentijevich I, Putnam CD, Remmers EF, Mueller JL, Le J, Kolodner RD, et al. The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. Arthritis Rheum. 2007;56:1273–85.
doi: 10.1002/art.22491
Koc B, Oktenli C, Bulucu F, Karadurmus N, Sanisoglu SY, Gul D. The rate of pyrin mutations in critically ill patients with systemic inflammatory response syndrome and sepsis: a pilot study. J Rheumatol. 2007;34:2070–5.
pubmed: 17696266
Zhang Q, Liu Z, Moncada-Velez M, Chen J, Ogishi M, Bigio B, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020. https://doi.org/10.1126/science.abd4570 .
doi: 10.1126/science.abd4570 pubmed: 33335060 pmcid: 7880903

Auteurs

Kate F Kernan (KF)

Division of Pediatric Critical Care Medicine, Department of Critical Care Medicine, Center for Critical Care Nephrology and Clinical Research Investigation and Systems Modeling of Acute Illness Center, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA. kate.kernan@chp.edu.

Lina Ghaloul-Gonzalez (L)

Division of Genetic and Genomic Medicine, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.

Jerry Vockley (J)

Division of Genetic and Genomic Medicine, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.

Janette Lamb (J)

Genomics Core Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.

Deborah Hollingshead (D)

Genomics Core Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.

Uma Chandran (U)

Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA.

Rahil Sethi (R)

Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA.

Hyun-Jung Park (HJ)

Department of Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.

Robert A Berg (RA)

Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

David Wessel (D)

Division of Critical Care Medicine, Department of Pediatrics, Children's National Hospital, Washington, DC, USA.

Murray M Pollack (MM)

Division of Critical Care Medicine, Department of Pediatrics, Children's National Hospital, Washington, DC, USA.

Kathleen L Meert (KL)

Division of Critical Care Medicine, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA.
Central Michigan University, Mt. Pleasant, MI, USA.

Mark W Hall (MW)

Division of Critical Care Medicine, Department of Pediatrics, The Research Institute at Nationwide Children's Hospital Immune Surveillance Laboratory, and Nationwide Children's Hospital, Columbus, OH, USA.

Christopher J L Newth (CJL)

Division of Pediatric Critical Care Medicine, Department of Anesthesiology and Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA.

John C Lin (JC)

Division of Critical Care Medicine, Department of Pediatrics, St. Louis Children's Hospital, St. Louis, MO, USA.

Allan Doctor (A)

Division of Critical Care Medicine, Department of Pediatrics, St. Louis Children's Hospital, St. Louis, MO, USA.
Division of Pediatric Critical Care Medicine, The Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, MD, Baltimore, USA.

Tom Shanley (T)

Division of Critical Care Medicine, Department of Pediatrics, C. S. Mott Children's Hospital, Ann Arbor, MI, USA.

Tim Cornell (T)

Division of Critical Care Medicine, Department of Pediatrics, C. S. Mott Children's Hospital, Ann Arbor, MI, USA.
Department of Pediatrics, Lucile Packard Children's Hospital Stanford, Stanford University, CA, Palo Alto, USA.

Rick E Harrison (RE)

Division of Critical Care Medicine, Department of Pediatrics, Mattel Children's Hospital at University of California Los Angeles, Los Angeles, CA, USA.

Athena F Zuppa (AF)

Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Russel Banks (R)

Department of Pediatrics, University of Utah, Salt Lake City, UT, USA.

Ron W Reeder (RW)

Department of Pediatrics, University of Utah, Salt Lake City, UT, USA.

Richard Holubkov (R)

Department of Pediatrics, University of Utah, Salt Lake City, UT, USA.

Daniel A Notterman (DA)

Department of Molecular Biology, Princeton University, Princeton, NJ, USA.

J Michael Dean (JM)

Department of Pediatrics, University of Utah, Salt Lake City, UT, USA.

Joseph A Carcillo (JA)

Division of Pediatric Critical Care Medicine, Department of Critical Care Medicine, Center for Critical Care Nephrology and Clinical Research Investigation and Systems Modeling of Acute Illness Center, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH