Integrative Study of the Structural and Dynamical Properties of a KirBac3.1 Mutant: Functional Implication of a Highly Conserved Tryptophan in the Transmembrane Domain.
Amino Acid Sequence
Conserved Sequence
Crystallography, X-Ray
Hydrogen Deuterium Exchange-Mass Spectrometry
Ion Channel Gating
Mutant Proteins
/ chemistry
Mutation
/ genetics
Potassium Channels, Inwardly Rectifying
/ chemistry
Protein Domains
Protein Interaction Maps
Protein Structure, Secondary
Tryptophan
/ chemistry
HDX-mass spectrometry
crystal structure of KirBac3.1 W46R
electrophysiology
gain of function Kir
molecular dynamics
neonatal diabetes mellitus
normal modes
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
29 Dec 2021
29 Dec 2021
Historique:
received:
16
11
2021
revised:
18
12
2021
accepted:
23
12
2021
entrez:
11
1
2022
pubmed:
12
1
2022
medline:
4
2
2022
Statut:
epublish
Résumé
ATP-sensitive potassium (K-ATP) channels are ubiquitously expressed on the plasma membrane of cells in several organs, including the heart, pancreas, and brain, and they govern a wide range of physiological processes. In pancreatic β-cells, K-ATP channels composed of Kir6.2 and SUR1 play a key role in coupling blood glucose and insulin secretion. A tryptophan residue located at the cytosolic end of the transmembrane helix is highly conserved in eukaryote and prokaryote Kir channels. Any mutation on this amino acid causes a gain of function and neonatal diabetes mellitus. In this study, we have investigated the effect of mutation on this highly conserved residue on a KirBac channel (prokaryotic homolog of mammalian Kir6.2). We provide the crystal structure of the mutant KirBac3.1 W46R (equivalent to W68R in Kir6.2) and its conformational flexibility properties using HDX-MS. In addition, the detailed dynamical view of the mutant during the gating was investigated using the in silico method. Finally, functional assays have been performed. A comparison of important structural determinants for the gating mechanism between the wild type KirBac and the mutant W46R suggests interesting structural and dynamical clues and a mechanism of action of the mutation that leads to the gain of function.
Identifiants
pubmed: 35008764
pii: ijms23010335
doi: 10.3390/ijms23010335
pmc: PMC8745282
pii:
doi:
Substances chimiques
Mutant Proteins
0
Potassium Channels, Inwardly Rectifying
0
Tryptophan
8DUH1N11BX
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Servier (France)
ID : # 45367
Organisme : AFM-telethon
ID : (#19928 and #23207
Organisme : ANR-CNRS
ID : cacsice
Références
N Engl J Med. 2004 Apr 29;350(18):1838-49
pubmed: 15115830
J Am Soc Mass Spectrom. 1998 Mar;9(3):225-33
pubmed: 9879360
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67
pubmed: 21460454
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21
pubmed: 20057044
Biophys J. 2004 Apr;86(4):2101-12
pubmed: 15041650
Molecules. 2019 Dec 05;24(24):
pubmed: 31817305
Cell. 2010 Jun 11;141(6):1018-29
pubmed: 20564790
J Comput Chem. 2008 Aug;29(11):1859-65
pubmed: 18351591
Circ Res. 2013 Mar 29;112(7):1059-72
pubmed: 23538276
Nucleic Acids Res. 2012 Jan;40(Database issue):D370-6
pubmed: 21890895
J Chem Theory Comput. 2015 Jun 9;11(6):2755-67
pubmed: 26575568
J Mol Graph. 1996 Feb;14(1):33-8, 27-8
pubmed: 8744570
J Biol Chem. 2017 Oct 20;292(42):17387-17398
pubmed: 28842488
Cell. 2011 Sep 30;147(1):199-208
pubmed: 21962516
Nature. 2006 Mar 23;440(7083):470-6
pubmed: 16554807
Sci Rep. 2020 May 21;10(1):8392
pubmed: 32439887
Methods Enzymol. 2017;583:143-172
pubmed: 28063489
Nat Struct Mol Biol. 2012 Jan 08;19(2):158-63
pubmed: 22231399
J Chem Theory Comput. 2016 Jan 12;12(1):405-13
pubmed: 26631602
Structure. 2010 Jul 14;18(7):839-46
pubmed: 20637420
Diabetes Obes Metab. 2007 Nov;9 Suppl 2:46-55
pubmed: 17919178
Cell Rep. 2019 May 7;27(6):1848-1857.e4
pubmed: 31067468
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):133-44
pubmed: 20124693
Diabetes. 2005 Sep;54(9):2503-13
pubmed: 16123337
J Biol Chem. 2019 Dec 6;294(49):18934-18948
pubmed: 31659119
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
Annu Rev Neurosci. 1988;11:97-118
pubmed: 2452599
J Mol Biol. 2007 Sep 21;372(3):774-97
pubmed: 17681537
Nucleic Acids Res. 2016 Jul 8;44(W1):W367-74
pubmed: 27198219
Biophys J. 2013 Jul 16;105(2):398-408
pubmed: 23870261
Neurology. 2007 Sep 25;69(13):1342-9
pubmed: 17652641
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2210-21
pubmed: 15572774
Front Mol Biosci. 2021 Jun 10;8:691901
pubmed: 34179097
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
pubmed: 15572765
Methods. 2018 Jul 15;144:27-42
pubmed: 29704663
J Gen Physiol. 2018 May 7;150(5):653-669
pubmed: 29685928
J Physiol. 2011 Jul 1;589(Pt 13):3071-83
pubmed: 21540348
Am J Physiol Endocrinol Metab. 2007 Oct;293(4):E880-9
pubmed: 17652156
J Gen Physiol. 2019 Oct 7;151(10):1231-1246
pubmed: 31511304
Nat Rev Endocrinol. 2020 Jul;16(7):378-393
pubmed: 32376986
Sci Rep. 2016 Feb 15;6:20753
pubmed: 26876271
Endocr Rev. 1999 Apr;20(2):101-35
pubmed: 10204114
N Engl J Med. 2006 Aug 3;355(5):456-66
pubmed: 16885549
Elife. 2017 Dec 29;6:
pubmed: 29286281
EMBO J. 2005 Jan 26;24(2):229-39
pubmed: 15650751
Biophys J. 2015 Dec 15;109(12):2452-2460
pubmed: 26682803
J Chem Theory Comput. 2011 Jul 12;7(7):2284-95
pubmed: 26606496
Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10832-6
pubmed: 22711831
J Comput Chem. 2013 Sep 30;34(25):2135-45
pubmed: 23832629
J Chem Theory Comput. 2011 Feb 8;7(2):525-37
pubmed: 26596171