Strong and widespread cycloheximide resistance in Stichococcus-like eukaryotic algal taxa.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
20 01 2022
Historique:
received: 05 04 2021
accepted: 04 01 2022
entrez: 21 1 2022
pubmed: 22 1 2022
medline: 3 3 2022
Statut: epublish

Résumé

This study was initiated following the serendipitous discovery of a unialgal culture of a Stichococcus-like green alga (Chlorophyta) newly isolated from soil collected on Signy Island (maritime Antarctica) in growth medium supplemented with 100 µg/mL cycloheximide (CHX, a widely used antibiotic active against most eukaryotes). In order to test the generality of CHX resistance in taxa originally identified as members of Stichococcus (the detailed taxonomic relationships within this group of algae have been updated since our study took place), six strains were studied: two strains isolated from recent substrate collections from Signy Island (maritime Antarctica) ("Antarctica" 1 and "Antarctica" 2), one isolated from this island about 50 years ago ("Antarctica" 3) and single Arctic ("Arctic"), temperate ("Temperate") and tropical ("Tropical") strains. The sensitivity of each strain towards CHX was compared by determining the minimum inhibitory concentration (MIC), and growth rate and lag time when exposed to different CHX concentrations. All strains except "Temperate" were highly resistant to CHX (MIC > 1000 µg/mL), while "Temperate" was resistant to 62.5 µg/mL (a concentration still considerably greater than any previously reported for algae). All highly resistant strains showed no significant differences in growth rate between control and treatment (1000 µg/mL CHX) conditions. Morphological examination suggested that four strains were consistent with the description of the species Stichococcus bacillaris while the remaining two conformed to S. mirabilis. However, based on sequence analyses and the recently available phylogeny, only one strain, "Temperate", was confirmed to be S. bacillaris, while "Tropical" represents the newly erected genus Tetratostichococcus, "Antarctica 1" Tritostichococcus, and "Antarctica 2", "Antarctica 3" and "Arctic" Deuterostichococcus. Both phylogenetic and CHX sensitivity analyses suggest that CHX resistance is potentially widespread within this group of algae.

Identifiants

pubmed: 35058560
doi: 10.1038/s41598-022-05116-y
pii: 10.1038/s41598-022-05116-y
pmc: PMC8776791
doi:

Substances chimiques

DNA, Algal 0
Soil 0
Cycloheximide 98600C0908

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1080

Subventions

Organisme : YPASM
ID : 304/PBIOLOGI/650963
Organisme : RUI
ID : 1001/PBIOLOGI/811305

Informations de copyright

© 2022. The Author(s).

Références

D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).
pubmed: 21881561 doi: 10.1038/nature10388
Kaur, P. & Peterson, E. Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol. 9, 2928 (2018).
pubmed: 30555448 pmcid: 6283892 doi: 10.3389/fmicb.2018.02928
Munita, J. M. & Arias, C. A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 4, 1–24 (2016).
doi: 10.1128/microbiolspec.VMBF-0016-2015
Leach, B. E., Ford, J. H. & Whiffen, A. J. Actidione, an antibiotic from Streptomyces griseus. J. Am. Chem. Soc. 69, 474 (1947).
pubmed: 20292455 doi: 10.1021/ja01194a519
Schneider-Poetsch, T. et al. Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat. Chem. Biol. 6, 209–217 (2010).
pubmed: 20118940 pmcid: 2831214 doi: 10.1038/nchembio.304
Whiffen, A. J. The production, assay, and antibiotic activity of actidione, an antibiotic from Streptomyces griseus. J. Bacteriol. 56, 283 (1948).
pubmed: 18880569 pmcid: 518581 doi: 10.1128/jb.56.3.283-291.1948
Palmer, C. M. & Maloney, T. E. Preliminary screening for potential algicides. Ohio J. Sci. 55, 1–8 (1955).
Zehnder, A. & Hughes, E. O. The antialgal activity of actidione. Can. J. Microbiol. 4, 399–408 (1958).
pubmed: 13561191 doi: 10.1139/m58-042
Hunter, E. O. Jr. & McVeigh, I. The effects of selected antibiotics on pure cultures of algae. Am. J. Bot. 48, 179–185 (1961).
doi: 10.1002/j.1537-2197.1961.tb11623.x
Vaara, T., Vaara, M. & Niemelä, S. Two improved methods for obtaining axenic cultures of cyanobacteria. Appl. Environ. Microbiol. 38, 1011–1014 (1979).
pubmed: 16345455 pmcid: 243622 doi: 10.1128/aem.38.5.1011-1014.1979
Castenholz, R. W. Culturing methods for cyanobacteria. Methods Enzymol. 167, 68–93 (1988).
doi: 10.1016/0076-6879(88)67006-6
Bolch, C. J. & Blackburn, S. I. Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kützing. J. Appl. Phychol. 8, 5–13 (1996).
doi: 10.1007/BF02186215
Choi, G. G., Bae, M. S., Ahn, C. Y. & Oh, H. M. Induction of axenic culture of Arthrospira (Spirulina) platensis based on antibiotic sensitivity of contaminating bacteria. Biotechnol. Lett. 30, 87–92 (2008).
pubmed: 17846705 doi: 10.1007/s10529-007-9523-2
Katoh, H., Furukawa, J., Tomita-Yokotani, K. & Nishi, Y. Isolation and purification of an axenic diazotrophic drought-tolerant cyanobacterium, Nostoc commune, from natural cyanobacterial crusts and its utilization for field research on soils polluted with radioisotopes. Biochim. Biophys. Acta. 1817, 1499–1505 (2008).
doi: 10.1016/j.bbabio.2012.02.039
Mutoh, E., Ohta, A. & Takagi, M. Studies on cycloheximide-sensitive and cycloheximide-resistant ribosomes in the yeast Candida maltosa. Gene 224, 9–15 (1998).
pubmed: 9931408 doi: 10.1016/S0378-1119(98)00518-6
Takagi, M., Kawai, S., Shibuya, I., Miyazaki, M. & Yano, K. Cloning in Saccharomyces cerevisiae of a cycloheximide resistance gene from the Candida maltosa genome which modifies ribosomes. J. Bacteriol. 68, 417–419 (1986).
doi: 10.1128/jb.168.1.417-419.1986
Dehoux, P., Davies, J. & Cannon, M. Natural cycloheximide resistance in yeast: The role of ribosomal protein L41. Eur. J. Biochem. 213, 841–848 (1993).
pubmed: 8477753 doi: 10.1111/j.1432-1033.1993.tb17827.x
Adoutte-Panvier, A. & Davies, J. E. Studies of ribosomes of yeast species: Susceptibility to inhibitors of protein synthesis in vivo and in vitro. Mol. Gen. Genet. 194, 310–317 (1984).
doi: 10.1007/BF00383533
Yagisawa, F. et al. Isolation of cycloheximide-resistant mutants of Cyanidioschyzon merolae. Cytologia 69, 97–100 (2004).
doi: 10.1508/cytologia.69.97
Thomas, D. N. et al. The Biology of Polar Regions 2nd edn. (Oxford University Press, 2008).
doi: 10.1093/acprof:oso/9780199298112.001.0001
Hughes, K. A. Solar UV-B radiation, associated with ozone depletion, inhibits the Antarctic terrestrial microalga, Stichococcus bacillaris. Polar Biol. 29, 327–336 (2006).
doi: 10.1007/s00300-005-0057-6
Karsten, U. & Holzinger, A. Green algae in alpine biological soil crust communities: Acclimation strategies against ultraviolet radiation and dehydration. Biodivers. Conserv. 23, 1845–1858 (2014).
pubmed: 24954980 pmcid: 4058318 doi: 10.1007/s10531-014-0653-2
Shekh, R. M., Singh, P., Singh, S. M. & Roy, U. Antifungal activity of Arctic and Antarctic bacteria isolates. Polar Biol. 34, 139–143 (2011).
doi: 10.1007/s00300-010-0854-4
Wiser, M. J. & Lenski, R. E. A comparison of methods to measure fitness in Escherichia coli. PLoS ONE 10, 10 (2015).
doi: 10.1371/journal.pone.0126210
Fritsch, F. E. The Structure and Reproduction of the Algae Vol. II (Cambridge University Press, 1959).
Fukushima, H. Studies on cryophytes in Japan. J. Yokohama Munic Univ. Ser. C 43, 1–146 (1963).
Hoham, R. W. Pleiomorphism in the snow alga, Raphidonema nivale Lagerh (Chlorophyta), and a revision of the genus Raphidonema Lagerh. Syesis 6, 255–263 (1973).
Pröschold, T. & Darienko, T. The green puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New generic and species concept among this widely distributed genus. Phytotaxa 2, 113–142 (2020).
doi: 10.11646/phytotaxa.441.2.2
Hodač, L. et al. Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography. FEMS Microbiol. Ecol. 92, 1–16 (2016).
doi: 10.1093/femsec/fiw122
Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: 27th Informational Supplement (Clinical and Laboratory Standards Institute, 2017).
European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). EUCAST discussion document E.Dis. 5.1. Determination of minimum inhibitory concentrations (MIC’s) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 9, 1–7 (2003).
Bertrand, R. L. Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. J. Bacteriol. 201, e00697-e718 (2019).
pubmed: 30642990 pmcid: 6416914 doi: 10.1128/JB.00697-18
Claesson, A. & Törnqvist, L. The toxicity of aluminium to two acido-tolerant green algae. Water Res. 22, 977–983 (1988).
doi: 10.1016/0043-1354(88)90144-3
Knapp, C. W. et al. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils. PLoS ONE 6, e27300 (2011).
pubmed: 22096547 pmcid: 3212566 doi: 10.1371/journal.pone.0027300
Su, J. Q., Wei, B., Xu, C. Y., Qiao, M. & Zhu, Y. G. Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China. Environ. Int. 65, 9–15 (2014).
pubmed: 24412260 doi: 10.1016/j.envint.2013.12.010
Tomova, I., Stoilova-Disheva, M., Lazarkevich, I. & Vasileva-Tonkova, E. Antibiotic activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands. Front. Life Sci. 8, 348–357 (2015).
doi: 10.1080/21553769.2015.1044130
Van Goethem, M. W. et al. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome 6, 40 (2018).
pubmed: 29471872 pmcid: 5824556 doi: 10.1186/s40168-018-0424-5
Cowan, D. A. et al. Non-indigenous microorganisms in the Antarctic: Assessing the risks. Trends Microbiol. 19, 540–548 (2011).
pubmed: 21893414 doi: 10.1016/j.tim.2011.07.008
Convey, P. et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 84, 203–244 (2014).
doi: 10.1890/12-2216.1
Cowan, D. A., Makhalanyane, T. P., Dennis, P. G. & Hopkins, D. W. Microbial ecology and biogeochemistry of continental Antarctic soils. Front. Microbiol. 5, 154 (2014).
pubmed: 24782842 pmcid: 3988359 doi: 10.3389/fmicb.2014.00154
Lo Giudice, A., Bruni, V. & Michaud, L. Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. J. Basic Microbiol. 47, 496–505 (2007).
pubmed: 18072250 doi: 10.1002/jobm.200700227
Bell, T., Callender, K., Whyte, L. & Greer, C. Microbial competition in polar soils: A review of an understudied but potentially important control on productivity. Biology 2, 533–554 (2013).
pubmed: 24832797 pmcid: 3960893 doi: 10.3390/biology2020533
Núñez-Montero, K. & Barrientos, L. Advances in Antarctic research for antibiotic discovery: A comprehensive narrative review of bacteria from Antarctic environments as potential sources of novel antibiotic compounds against human pathogens and microorganisms of industrial importance. Antibiotics 7, 90 (2018).
pmcid: 6316688 doi: 10.3390/antibiotics7040090
Davies, J. Are antibiotics naturally antibiotics?. J. Ind. Microbiol. Biotechnol. 33, 496–499 (2006).
pubmed: 16552582 doi: 10.1007/s10295-006-0112-5
Levy, S. B. Antibiotic resistance: Consequences of inaction. Clin. Infect. Dis. 33, 124–129 (2001).
doi: 10.1086/321837
Marshall, B. M. & Levy, S. B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 24, 718–733 (2011).
pubmed: 21976606 pmcid: 3194830 doi: 10.1128/CMR.00002-11
Andersson, D. I. & Hughes, D. Evolution of antibiotic resistance at non-lethal drug concentrations. Drug Resist. Updates 15, 162–172 (2012).
doi: 10.1016/j.drup.2012.03.005
Kuwabara, J. S. & Leland, H. V. Adaptation of Selenastrum capricornutum (Chlorophyceae) to copper. Environ. Toxicol. Chem. 5, 197–203 (1986).
doi: 10.1002/etc.5620050211
Martínez, J. L., Coque, T. M. & Baquero, F. What is a resistance gene? Ranking risk in resistomes. Nat. Rev. Microbiol. 13, 116 (2015).
pubmed: 25534811 doi: 10.1038/nrmicro3399
Bold, H. C. The morphology of Chlamydomonas chlamydogama sp. nov. Bull. Torrey Bot. Club 76, 101–108 (1949).
doi: 10.2307/2482218
Bischoff, H. & Bold, H. C. Phycological studies IV. Some soil algae from enchanted rock and related algal species. Univ. Texas Publ. 6318, 95 (1963).
Balouiri, M., Sadiki, M. & Ibnsouda, S. K. Methods for in vitro evaluating antibiotic activity: A review. J. Pharm. Anal. 6, 71–79 (2016).
pubmed: 29403965 doi: 10.1016/j.jpha.2015.11.005
Zhao, Q. et al. Microalgal microscale model for microalgal growth inhibition evaluation of marine natural products. Sci. Rep. 8, 10541 (2018).
pubmed: 30002474 pmcid: 6043507 doi: 10.1038/s41598-018-28980-z
LeGresley, M. & McDermott, G. Counting chamber methods for quantitative phytoplankton analysis—Haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. In Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis (eds Karlson, B. et al.) 25–30 (IOC Manuals and Guides. Intergovernmental Oceanographic Commission of UNESCO, 2010).
Hall, B. G., Acar, H., Nandipati, A. & Barlow, M. Growth rates made easy. Mol. Biol. Evol. 31, 232–238 (2010).
doi: 10.1093/molbev/mst187
Mattox, K. R. & Bold, H. C. Phycological studies III. The taxonomy of certain ulotrichacean algae. Univ. Texas Publ. 6222, 1–67 (1962).
Prescott, G. W. Algae of the Western Great Lakes area (C Bron Company Publishers, 2010).
John, D. M., Whitton, B. A. & Brook, A. J. The Freshwater Algal Flora of the British Isles 2nd edn. (Cambridge University Press, 2011).
Hallmann, C. et al. Molecular diversity of phototrophic biofilms on building stone. FEMS Microbiol. Ecol. 84, 355–372 (2013).
pubmed: 23278436 doi: 10.1111/1574-6941.12065
Liu, J., Gerken, H. & Li, Y. Single-tube colony PCR for DNA amplification and transformant screening of oleaginous microalgae. J. Appl. Phycol. 26, 1719–1726 (2014).
doi: 10.1007/s10811-013-0220-3
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
pubmed: 9254694 pmcid: 146917 doi: 10.1093/nar/25.17.3389
Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2011).
pubmed: 22080510 pmcid: 3245020 doi: 10.1093/nar/gkr988
Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).
pubmed: 16928733 doi: 10.1093/bioinformatics/btl446
Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).
pubmed: 12912839 doi: 10.1093/bioinformatics/btg180
Rambaut, A. FigTree. Version 1.3.1 [software]. Available from: http://www.treebioedacuk/software/figtree (2009).

Auteurs

Nur Hidayu Syuhada (NH)

School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia.

Faradina Merican (F)

School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia. faradina@usm.my.
National Antarctic Research Centre, University of Malaya, Kuala Lumpur, Malaysia. faradina@usm.my.

Syazana Zaki (S)

School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia.

Paul A Broady (PA)

School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.

Peter Convey (P)

British Antarctic Survey, Cambridge, UK.
Department of Zoology, University of Johannesburg, Johannesburg, South Africa.

Narongrit Muangmai (N)

Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand.
Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Populus Soil Microbiology Soil Microbiota Fungi
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Classifications MeSH