A Chimeric DNA/RNA Antiparallel Quadruplex with Improved Stability.
DNA
RNA
quadruplex
stability
thrombin-binding aptamer
Journal
ChemistryOpen
ISSN: 2191-1363
Titre abrégé: ChemistryOpen
Pays: Germany
ID NLM: 101594811
Informations de publication
Date de publication:
02 2022
02 2022
Historique:
revised:
13
12
2021
received:
25
11
2021
entrez:
1
2
2022
pubmed:
2
2
2022
medline:
26
4
2022
Statut:
ppublish
Résumé
Nucleic acid quadruplexes are proposed to play a role in the regulation of gene expression, are often present in aptamers selected for specific binding functions and have potential applications in medicine and biotechnology. Therefore, understanding their structure and thermodynamic properties and designing highly stable quadruplexes is desirable for a variety of applications. Here, we evaluate DNA→RNA substitutions in the context of a monomolecular, antiparallel quadruplex, the thrombin-binding aptamer (TBA, GGTTGGTGTGGTTGG) in the presence of either K
Identifiants
pubmed: 35103415
doi: 10.1002/open.202100276
pmc: PMC8805387
doi:
Substances chimiques
RNA
63231-63-0
DNA
9007-49-2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202100276Subventions
Organisme : Shota Rustaveli National Science Foundation
ID : FR17_140
Organisme : Dan Schoenberg RNA Undergraduate Research Fellowship
Informations de copyright
© 2022 The Authors. Published by Wiley-VCH GmbH.
Références
Biochemistry. 2014 Dec 16;53(49):7718-23
pubmed: 25375976
Biopolymers. 1987 Sep;26(9):1601-20
pubmed: 3663875
Biophys J. 2016 May 24;110(10):2169-75
pubmed: 27224482
Biophys Chem. 2014 Jan;185:14-8
pubmed: 24317195
Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3745-9
pubmed: 8475124
Nat Chem. 2014 Jan;6(1):75-80
pubmed: 24345950
J Mol Biol. 1994 Feb 4;235(5):1532-47
pubmed: 8107090
Chem Rev. 2019 May 22;119(10):6290-6325
pubmed: 30605316
Nucleic Acids Res. 2007;35(19):6517-25
pubmed: 17895279
Bioorg Med Chem. 2006 Aug 15;14(16):5584-91
pubmed: 16682210
Nucleic Acids Res. 2008 Oct;36(17):5482-515
pubmed: 18718931
J Biomol Struct Dyn. 2004 Aug;22(1):25-33
pubmed: 15214802
J Biol Chem. 2000 Jul 14;275(28):21460-7
pubmed: 10801812
Biochemistry. 2000 Feb 15;39(6):1462-8
pubmed: 10684628
FEBS Lett. 2015 Jun 22;589(14):1653-68
pubmed: 25979174
Nucleic Acids Res. 2010 Aug;38(14):4877-88
pubmed: 20348136
Biochemistry. 1993 Mar 2;32(8):1899-904
pubmed: 8448147
J Phys Chem B. 2019 Feb 7;123(5):1060-1067
pubmed: 30648871
Nat Struct Mol Biol. 2006 Dec;13(12):1055-9
pubmed: 17146462
Nature. 1992 Feb 6;355(6360):564-6
pubmed: 1741036
Nat Chem. 2011 Feb;3(2):103-13
pubmed: 21258382
Org Biomol Chem. 2004 Feb 7;2(3):313-8
pubmed: 14747859
J Phys Chem B. 2020 May 28;124(21):4263-4269
pubmed: 32370501
Trends Biotechnol. 2017 Oct;35(10):997-1013
pubmed: 28755976
Biophys Chem. 2011 May;155(2-3):82-8
pubmed: 21435774
Sci Rep. 2018 Jul 4;8(1):10115
pubmed: 29973629
Nucleic Acids Res. 2015 Oct 15;43(18):8627-37
pubmed: 26350216
EMBO Rep. 2015 Aug;16(8):910-22
pubmed: 26150098
DNA Cell Biol. 2001 Aug;20(8):499-508
pubmed: 11560782
J Am Chem Soc. 2005 Aug 31;127(34):11906-7
pubmed: 16117506
J Biol Chem. 1995 Jan 27;270(4):1754-60
pubmed: 7829511
J Biol Chem. 1993 Aug 25;268(24):17651-4
pubmed: 8102368
J Am Chem Soc. 2006 May 3;128(17):5966-73
pubmed: 16637665
Nucleic Acids Res. 2005 Feb 24;33(4):1182-92
pubmed: 15731338
Org Biomol Chem. 2015 May 28;13(20):5570-85
pubmed: 25879384
J Am Chem Soc. 2001 Nov 7;123(44):10799-804
pubmed: 11686680