The proteome reveals the involvement of serine/threonine kinase in the recognition of self- incompatibility in almond.


Journal

Journal of proteomics
ISSN: 1876-7737
Titre abrégé: J Proteomics
Pays: Netherlands
ID NLM: 101475056

Informations de publication

Date de publication:
30 03 2022
Historique:
received: 04 11 2021
revised: 15 01 2022
accepted: 25 01 2022
pubmed: 6 2 2022
medline: 1 3 2022
entrez: 5 2 2022
Statut: ppublish

Résumé

The self-incompatibility recognition mechanism determines whether the gametophyte is successfully fertilized between pollen tube SCF (SKP1-CUL1-F-box-RBX1) protein and pistil S-RNase protein during fertilization is unclear. In this study, the pistils of two almond cultivars 'Wanfeng' and 'Nonpareil' were used as the experimental materials after self- and nonself/cross-pollination, and pistils from the stamen-removed flowers were used as controls. We used fluorescence microscopy to observe the development of pollen tubes after pollination and 4D-LFQ to detect the protein expression profiles of 'Wanfeng' and 'Nonpareil' pistils and in controls. The results showed that it took 24-36 h for the development of the pollen tube to 1/3 of the pistil, and a total of 7684 differentially accumulated proteins (DAPs) were identified in the pistil after pollinating for 36 h, of which 7022 were quantifiable. Bioinformatics analysis based on the function of DAPs, identified RNA polymerases (4 DAPs), autophagy (3 DAPs), oxidative phosphorylation (3 DAPs), and homologous recombination (2 DAPs) pathways associated with the self-incompatibility process. These results were confirmed by parallel reaction monitoring (PRM), protein interaction and bioinformatics analysis. Taken together, these results provide the involvement of serine/threonine kinase protein in the reaction of pollen tube recognition the nonself- and the self-S-RNase protein. SIGNIFICANCE: Gametophytic self-incompatibility (GSI) is controlled by the highly polymorphic S locus or S haplotype, with two linked self-incompatibility genes, one encoding the S-RNase protein of the pistil S-determinant and the other encoding the F-box/SLF/SFB (S haplotype-specific F-box protein) protein of the pollen S-determinant. The recognition mechanism between pollen tube SCF protein and pistil S-RNase protein is divided into nonself- and self-recognition hypothesis mechanisms. At present, two hypothetical mechanisms cannot explain the recognition between pollen and pistil well, so the mechanism of gametophytic self-incompatibility recognition is still not fully revealed. In this experiment, we investigated the molecular mechanism of pollen-pistil recognition in self-incompatibility using self- and nonself-pollinated pistils of almond cultivars 'Wanfeng' and 'Nonpareil'. Based on our results, we proposed a potential involvement of the MARK2 (serine/threonine kinase) protein in the reaction of pollen tube recognition of the nonself- and the self-S-RNase protein. It provides a new way to reveal how almond pollen tubes recognize the self and nonself S-RNase enzyme protein.

Identifiants

pubmed: 35123051
pii: S1874-3919(22)00028-8
doi: 10.1016/j.jprot.2022.104505
pii:
doi:

Substances chimiques

Plant Proteins 0
Proteome 0
Serine 452VLY9402
Protein Serine-Threonine Kinases EC 2.7.11.1
Ribonucleases EC 3.1.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

104505

Informations de copyright

Copyright © 2022. Published by Elsevier B.V.

Auteurs

Yeting Xu (Y)

College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China.

Qiuping Zhang (Q)

Liaoning Institute of Pomology, Xiongyue 115009, Liaoning, China.

Xiao Zhang (X)

College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.

Jian Wang (J)

College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.

Mubarek Ayup (M)

Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China.

Bo Yang (B)

Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China.

Chunmiao Guo (C)

Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China.

Peng Gong (P)

Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China. Electronic address: gongpeng@xaas.ac.cn.

Wenxuan Dong (W)

College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China. Electronic address: dongwx63@syau.edu.cn.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Triticum Transcription Factors Gene Expression Regulation, Plant Plant Proteins Salt Stress
Glycine max Photoperiod Ubiquitin-Protein Ligases Flowers Gene Expression Regulation, Plant

Classifications MeSH