Can biochemical traits bridge the gap between genomics and plant performance? A study in rice under drought.
Journal
Plant physiology
ISSN: 1532-2548
Titre abrégé: Plant Physiol
Pays: United States
ID NLM: 0401224
Informations de publication
Date de publication:
01 06 2022
01 06 2022
Historique:
received:
03
09
2021
accepted:
17
01
2022
pubmed:
16
2
2022
medline:
3
6
2022
entrez:
15
2
2022
Statut:
ppublish
Résumé
The possibility of introducing metabolic/biochemical phenotyping to complement genomics-based predictions in breeding pipelines has been considered for years. Here we examine to what extent and under what environmental conditions metabolic/biochemical traits can effectively contribute to understanding and predicting plant performance. In this study, multivariable statistical models based on flag leaf central metabolism and oxidative stress status were used to predict grain yield (GY) performance for 271 indica rice (Oryza sativa) accessions grown in the field under well-watered and reproductive stage drought conditions. The resulting models displayed significantly higher predictability than multivariable models based on genomic data for the prediction of GY under drought (Q2 = 0.54-0.56 versus 0.35) and for stress-induced GY loss (Q2 = 0.59-0.64 versus 0.03-0.06). Models based on the combined datasets showed predictabilities similar to metabolic/biochemical-based models alone. In contrast to genetic markers, models with enzyme activities and metabolite values also quantitatively integrated the effect of physiological differences such as plant height on GY. The models highlighted antioxidant enzymes of the ascorbate-glutathione cycle and a lipid oxidation stress marker as important predictors of rice GY stability under drought at the reproductive stage, and these stress-related variables were more predictive than leaf central metabolites. These findings provide evidence that metabolic/biochemical traits can integrate dynamic cellular and physiological responses to the environment and can help bridge the gap between the genome and the phenome of crops as predictors of GY performance under drought.
Identifiants
pubmed: 35166848
pii: 6528862
doi: 10.1093/plphys/kiac053
pmc: PMC9157150
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1139-1152Informations de copyright
© The Author(s) 2022. Published by Oxford University Press on behalf of American Society of Plant Biologists.
Références
Nat Commun. 2014 Mar 28;5:3537
pubmed: 24675291
Sci Rep. 2016 Feb 15;6:21049
pubmed: 26876641
Plant Physiol. 2011 Jan;155(1):93-100
pubmed: 21045124
Front Plant Sci. 2020 Jun 26;11:944
pubmed: 32754171
Nat Biotechnol. 2004 Jun;22(6):746-54
pubmed: 15107863
Plant Biol (Stuttg). 2019 Mar;21(2):185-189
pubmed: 30521134
Plant Physiol. 2008 Apr;146(4):1579-98
pubmed: 18305207
J Exp Bot. 2020 Jan 7;71(2):669-683
pubmed: 31087074
J Plant Physiol. 2021 Feb;257:153352
pubmed: 33360148
Nat Genet. 2014 Jul;46(7):714-21
pubmed: 24908251
J Exp Bot. 2011 May;62(8):2841-54
pubmed: 21357771
J Exp Bot. 2020 Feb 19;71(4):1614-1627
pubmed: 31846000
J Exp Bot. 2007;58(2):169-75
pubmed: 16997901
Plant Cell Environ. 2012 Jan;35(1):1-21
pubmed: 21477125
J Plant Physiol. 2021 Feb;257:153354
pubmed: 33385619
Plant Physiol. 2012 Mar;158(3):1139-45
pubmed: 22253257
Glob Chang Biol. 2014 Dec;20(12):3670-85
pubmed: 24802996
Trends Plant Sci. 2004 Sep;9(9):426-32
pubmed: 15337492
Theor Appl Genet. 2017 Sep;130(9):1927-1939
pubmed: 28647896
Mol Cells. 2013 Oct;36(4):304-15
pubmed: 24170089
Genetics. 2018 Apr;208(4):1373-1385
pubmed: 29363551
Plant Physiol. 2010 Feb;152(2):428-44
pubmed: 20018593
Trends Plant Sci. 2016 Jan;21(1):31-42
pubmed: 26559599
Sci Rep. 2016 Feb 24;6:21732
pubmed: 26907211
J Exp Bot. 2020 Jan 7;71(2):461-464
pubmed: 31425582
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11034-9
pubmed: 21646530
Theor Appl Genet. 2010 Jan;120(2):239-47
pubmed: 19911163
Plant J. 2012 Sep;71(5):850-9
pubmed: 22540282
J Exp Bot. 2015 Sep;66(18):5429-40
pubmed: 26163702
iScience. 2020 Dec 05;24(1):101890
pubmed: 33364579
Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4759-64
pubmed: 17360597
Plant J. 2016 Dec;88(5):826-838
pubmed: 27520391
Plant Biotechnol J. 2021 Feb;19(2):261-272
pubmed: 32738177
Curr Opin Plant Biol. 2009 Apr;12(2):223-30
pubmed: 19162531
J Exp Bot. 2018 Jul 18;69(16):4017-4032
pubmed: 29767744
Plant Physiol. 2011 Jan;155(1):2-18
pubmed: 21205630
Planta. 2021 Jun 25;254(1):13
pubmed: 34173050
Plant J. 2016 Oct;88(2):219-227
pubmed: 27311694
Am J Hum Genet. 2006 Apr;78(4):629-44
pubmed: 16532393
Phytochemistry. 2019 Oct;166:112063
pubmed: 31280091
Anal Chem. 2018 Nov 20;90(22):13400-13408
pubmed: 30335973
Plant Physiol. 2017 Aug;174(4):2302-2315
pubmed: 28600346
Anal Chim Acta. 2007 Jun 5;592(2):210-7
pubmed: 17512828
Nat Genet. 2012 Jan 15;44(2):217-20
pubmed: 22246502
Trends Plant Sci. 2010 Aug;15(8):462-70
pubmed: 20554469
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10348-53
pubmed: 19506259
Front Plant Sci. 2016 Mar 08;7:276
pubmed: 27014300
Heredity (Edinb). 2019 Sep;123(3):395-406
pubmed: 30911139
J Exp Bot. 2014 Nov;65(21):6191-204
pubmed: 24596174
Mol Breed. 2021 May 17;41(5):33
pubmed: 37309328
Annu Rev Plant Biol. 2007;58:459-81
pubmed: 17288534
Front Plant Sci. 2016 Sep 20;7:1384
pubmed: 27703460
Annu Rev Plant Biol. 2010;61:421-42
pubmed: 20192739
Metabolomics. 2016;12:38
pubmed: 26848289
Front Plant Sci. 2017 Aug 07;8:1302
pubmed: 28824660
Annu Rev Plant Biol. 2015;66:187-210
pubmed: 25621519
Genetics. 2014 Oct;198(2):483-95
pubmed: 25009151
Curr Opin Plant Biol. 2016 Jun;31:162-71
pubmed: 27161822
Curr Opin Plant Biol. 2013 Feb;16(1):62-9
pubmed: 23279801