Understanding the adsorption of plasmid DNA and RNA molecules onto arginine-agarose chromatographic resin.


Journal

Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234

Informations de publication

Date de publication:
May 2022
Historique:
received: 24 08 2021
accepted: 08 02 2022
pubmed: 19 2 2022
medline: 10 6 2022
entrez: 18 2 2022
Statut: ppublish

Résumé

The production of nucleic acids (plasmid DNA or mRNA) in response to the development of new advanced vaccine platforms has greatly increased recently, mostly resulting from the pandemic situation. Due to the intended pharmaceutical use, nucleic acids preparations must fulfill all the required specifications in terms of purity and quality. Chromatography is a standard operation used to isolate these molecules from impurities, playing a central role in the manufacturing processes. However, the mechanism of nucleic acid adsorption in chromatographic resins is poorly understood, often leading to low adsorption capacities and a lack of specificity. Here we investigated the adsorption of plasmid DNA and RNA molecules onto arginine-agarose, a resin with potential for large-scale application. Equilibrium batch studies were performed through pre-purified samples, using arginine-based ligands by varying the adsorption conditions in the pH value range from 6.0 to 9.0. Langmuir and Freundlich isotherm models were used to describe the adsorption equilibrium. The best fit for both nucleic acids was achieved using the Freundlich model. The correct choice of pH showed critical for controlling the efficacy of arginine-nucleic acid interaction, due to its influence on the nucleic acid structures. This type of analysis is necessary for the improvement of the selectivity and binding capacities of the resins used for plasmid DNA or mRNA purification. The results presented here indicate that adsorption conditions can be tuned to enhance separation between pDNA and RNA, an important feature in the purification of nucleic acids for vaccine production.

Sections du résumé

BACKGROUND BACKGROUND
The production of nucleic acids (plasmid DNA or mRNA) in response to the development of new advanced vaccine platforms has greatly increased recently, mostly resulting from the pandemic situation. Due to the intended pharmaceutical use, nucleic acids preparations must fulfill all the required specifications in terms of purity and quality. Chromatography is a standard operation used to isolate these molecules from impurities, playing a central role in the manufacturing processes. However, the mechanism of nucleic acid adsorption in chromatographic resins is poorly understood, often leading to low adsorption capacities and a lack of specificity.
METHODS AND RESULTS RESULTS
Here we investigated the adsorption of plasmid DNA and RNA molecules onto arginine-agarose, a resin with potential for large-scale application. Equilibrium batch studies were performed through pre-purified samples, using arginine-based ligands by varying the adsorption conditions in the pH value range from 6.0 to 9.0. Langmuir and Freundlich isotherm models were used to describe the adsorption equilibrium. The best fit for both nucleic acids was achieved using the Freundlich model. The correct choice of pH showed critical for controlling the efficacy of arginine-nucleic acid interaction, due to its influence on the nucleic acid structures. This type of analysis is necessary for the improvement of the selectivity and binding capacities of the resins used for plasmid DNA or mRNA purification.
CONCLUSIONS CONCLUSIONS
The results presented here indicate that adsorption conditions can be tuned to enhance separation between pDNA and RNA, an important feature in the purification of nucleic acids for vaccine production.

Identifiants

pubmed: 35178684
doi: 10.1007/s11033-022-07239-x
pii: 10.1007/s11033-022-07239-x
pmc: PMC8853897
doi:

Substances chimiques

RNA, Messenger 0
RNA 63231-63-0
DNA 9007-49-2
Sepharose 9012-36-6
Arginine 94ZLA3W45F

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3893-3901

Subventions

Organisme : conselho nacional de desenvolvimento científico e tecnológico
ID : 305747/2020-7
Organisme : conselho nacional de desenvolvimento científico e tecnológico
ID : 304125/2018-0
Organisme : conselho nacional de desenvolvimento científico e tecnológico
ID : 307739/2015-5
Organisme : feder - programa operacional competitividade e internacionalização
ID : PTDC/BII-BBF/29496/2017

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Acc Chem Res. 2011 Dec 20;44(12):1270-9
pubmed: 21732619
J Chromatogr B Analyt Technol Biomed Life Sci. 2018 Jun 15;1087-1088:149-157
pubmed: 29738965
Anal Biochem. 2008 Mar 15;374(2):432-4
pubmed: 18198126
J Sep Sci. 2012 Nov;35(22):3046-58
pubmed: 22961759
J Chromatogr B Analyt Technol Biomed Life Sci. 2013 Mar 1;919-920:67-74
pubmed: 23411021
J Chem Theory Comput. 2013 Feb 12;9(2):935-943
pubmed: 23525495
Microbiol Spectr. 2014 Dec;2(6):
pubmed: 26104457
J Sep Sci. 2008 Aug;31(14):2605-18
pubmed: 18461569
Biotechnol Prog. 2000 May-Jun;16(3):416-24
pubmed: 10835244
J Gene Med. 2007 May;9(5):392-402
pubmed: 17407167
Biotechnol Prog. 2019 Mar;35(2):e2765
pubmed: 30537363
J Chromatogr A. 2005 Mar 25;1069(1):3-22
pubmed: 15844479
J Chem Phys. 2014 Oct 28;141(16):165102
pubmed: 25362343
N Biotechnol. 2020 Nov 25;59:1-9
pubmed: 32622863
J Pharm Sci. 2013 Nov;102(11):3932-41
pubmed: 23996350
N Engl J Med. 2021 Feb 4;384(5):403-416
pubmed: 33378609
J Chromatogr B Analyt Technol Biomed Life Sci. 2019 Jan 15;1105:184-192
pubmed: 30597418
Recent Pat Biotechnol. 2007;1(2):151-66
pubmed: 19075838
Vaccines (Basel). 2013 Jun 25;1(3):225-49
pubmed: 26344110
Colloids Surf B Biointerfaces. 2011 Mar;83(1):1-9
pubmed: 21109408
J Sep Sci. 2014 Sep;37(17):2284-92
pubmed: 24917044
Methods Mol Biol. 2012;824:271-303
pubmed: 22160904
Science. 2020 Aug 14;369(6505):806-811
pubmed: 32434945
Biotechnol Prog. 1999 Jul-Aug;15(4):725-31
pubmed: 10441364
Hum Gene Ther. 2017 Oct;28(10):856-861
pubmed: 28826233
NPJ Vaccines. 2020 Feb 4;5:11
pubmed: 32047656
N Engl J Med. 2020 Dec 31;383(27):2603-2615
pubmed: 33301246

Auteurs

Sara Cardoso (S)

Departamento de Engenharia Química, Escola Politécnica da Universidade de São Paulo, Av. Prof. Luciano Gualberto, Trav. 3, Nº 380, São Paulo, SP, CEP 05508-900, Brazil.

Fani Sousa (F)

CICS-UBI - Centro de Investigação de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.

Pedro A Pessoa Filho (PA)

Departamento de Engenharia Química, Escola Politécnica da Universidade de São Paulo, Av. Prof. Luciano Gualberto, Trav. 3, Nº 380, São Paulo, SP, CEP 05508-900, Brazil.

Adriano R Azzoni (A)

Departamento de Engenharia Química, Escola Politécnica da Universidade de São Paulo, Av. Prof. Luciano Gualberto, Trav. 3, Nº 380, São Paulo, SP, CEP 05508-900, Brazil. adriano.azzoni@usp.br.

Articles similaires

Humans Endoribonucleases RNA, Messenger RNA Caps Gene Expression Regulation
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Humans RNA, Circular Exosomes Cell Proliferation Epithelial-Mesenchymal Transition
Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases

Classifications MeSH