Mitochondrial variant enrichment from high-throughput single-cell RNA sequencing resolves clonal populations.
Journal
Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
received:
06
03
2021
accepted:
06
01
2022
pubmed:
26
2
2022
medline:
20
7
2022
entrez:
25
2
2022
Statut:
ppublish
Résumé
The combination of single-cell transcriptomics with mitochondrial DNA variant detection can be used to establish lineage relationships in primary human cells, but current methods are not scalable to interrogate complex tissues. Here, we combine common 3' single-cell RNA-sequencing protocols with mitochondrial transcriptome enrichment to increase coverage by more than 50-fold, enabling high-confidence mutation detection. The method successfully identifies skewed immune-cell expansions in primary human clonal hematopoiesis.
Identifiants
pubmed: 35210612
doi: 10.1038/s41587-022-01210-8
pii: 10.1038/s41587-022-01210-8
pmc: PMC9288977
mid: NIHMS1782664
doi:
Substances chimiques
DNA, Mitochondrial
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1030-1034Subventions
Organisme : NCI NIH HHS
ID : R00 CA218832
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA014051
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA009216
Pays : United States
Organisme : NHGRI NIH HHS
ID : T32 HG000044
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK103794
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA260852
Pays : United States
Organisme : NCI NIH HHS
ID : K99 CA218832
Pays : United States
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Giladi, A. & Amit, I. Single-cell genomics: a stepping stone for future immunology discoveries. Cell 172, 14–21 (2018).
doi: 10.1016/j.cell.2017.11.011
Acosta, J., Ssozi, D. & van Galen, P. Single-cell RNA sequencing to disentangle the blood system. Arterioscler. Thromb. Vasc. Biol. 41, 1012–1018 (2021).
doi: 10.1161/ATVBAHA.120.314654
Nam, A. S. et al. Somatic mutations and cell identity linked by genotyping of transcriptomes. Nature 571, 355–360 (2019).
doi: 10.1038/s41586-019-1367-0
van Galen, P. et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity. Cell 176, 1265–1281 (2019).
doi: 10.1016/j.cell.2019.01.031
Wagner, D. E. & Klein, A. M. Lineage tracing meets single-cell omics: opportunities and challenges. Nat. Rev. Genet. 21, 410–427 (2020).
doi: 10.1038/s41576-020-0223-2
Liggett, L. A. & Sankaran, V. G. Unraveling hematopoiesis through the lens of genomics. Cell 182, 1384–1400 (2020).
doi: 10.1016/j.cell.2020.08.030
Ludwig, L. S. et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 176, 1325–1339 (2019).
doi: 10.1016/j.cell.2019.01.022
Lareau, C. A. et al. Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling. Nat. Biotechnol. 39, 451–461 (2021).
doi: 10.1038/s41587-020-0645-6
Xu, J. et al. Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA. eLife 8, e45105 (2019).
doi: 10.7554/eLife.45105
Velten, L. et al. Identification of leukemic and pre-leukemic stem cells by clonal tracking from single-cell transcriptomics. Nat. Commun. 12, 1366 (2021).
doi: 10.1038/s41467-021-21650-1
Hughes, T. K. et al. Second-strand synthesis-based massively parallel scRNA-seq reveals cellular states and molecular features of human inflammatory skin pathologies. Immunity 53, 878–894 (2020).
doi: 10.1016/j.immuni.2020.09.015
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).
doi: 10.1016/j.cell.2015.05.002
Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).
doi: 10.1038/s41587-021-00927-2
Tu, A. A. et al. TCR sequencing paired with massively parallel 3′ RNA-seq reveals clonotypic T cell signatures. Nat. Immunol. 20, 1692–1699 (2019).
doi: 10.1038/s41590-019-0544-5
Abdel-Wahab, O. et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114, 144–147 (2009).
doi: 10.1182/blood-2009-03-210039
Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).
doi: 10.1186/s12864-018-4772-0
Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).
doi: 10.1016/j.ccr.2011.06.001
Luchman, H. A. et al. An in vivo patient-derived model of endogenous IDH1-mutant glioma. Neuro. Oncol. 14, 184–191 (2012).
doi: 10.1093/neuonc/nor207
Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016).
doi: 10.1038/nature16490
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins, and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
doi: 10.1038/nmeth.2688
Morgan, M., Obenchain, V., Hester, J. & Pagès, H. SummarizedExperiment: SummarizedExperiment container. R package version 1.24.0 https://bioconductor.org/packages/release/bioc/html/SummarizedExperiment.html (2019).
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
doi: 10.1016/j.cell.2019.05.031
Yang, S. et al. Decontamination of ambient RNA in single-cell RNA-seq with DecontX. Genome Biol. 21, 57 (2020).
doi: 10.1186/s13059-020-1950-6