Epileptic disorders in Becker and Duchenne muscular dystrophies: a systematic review and meta-analysis.

Becker muscular dystrophy Duchenne muscular dystrophy Epidemiology Epilepsy Meta-analysis Systematic review

Journal

Journal of neurology
ISSN: 1432-1459
Titre abrégé: J Neurol
Pays: Germany
ID NLM: 0423161

Informations de publication

Date de publication:
Jul 2022
Historique:
received: 03 02 2022
accepted: 17 02 2022
revised: 16 02 2022
pubmed: 2 3 2022
medline: 25 6 2022
entrez: 1 3 2022
Statut: ppublish

Résumé

Dystrophin alterations in the brain have been associated with an increased risk of epilepsy in Becker and Duchenne muscular dystrophies (BMD and DMD). Moreover, an association between the mutation site and the risk of epilepsy is not ruled out. The aim of this systematic review and meta-analysis was to estimate the prevalence of epilepsy in BMD and DMD populations and to establish a possible association between the site of mutation in the dystrophin gene and the risk of epilepsy. Systematic searches of Medline, Scopus, Web of Science, and Cochrane Library were conducted to identify relevant studies published from inception to January 2022. Observational studies of participants with BMD/DMD estimating the prevalence of epilepsy were included. The main outcome was the prevalence of epilepsy, and the secondary outcome was the prevalence ratio considering genotype. A random effects meta-analysis was performed for the prevalence of epilepsy. Eight studies were included in the systematic review and meta-analysis. The prevalence of epilepsy was 7% (95% CI 3-11%) in BMD, 5% (95% CI 2-8%) in DMD, and 5% (95% CI 3-7%) in the overall estimate. No association was observed between mutation site and the prevalence of epilepsy. BMD/DMD is strongly associated with the prevalence of epilepsy, with a higher prevalence in BMD/DMD populations than in the general population, probably owing to alterations in Dp427. The current evidence does not support the hypothesis that Dp140 or Dp71 affect epilepsy risk.

Identifiants

pubmed: 35229191
doi: 10.1007/s00415-022-11040-y
pii: 10.1007/s00415-022-11040-y
doi:

Substances chimiques

Dystrophin 0

Types de publication

Journal Article Meta-Analysis Review Systematic Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

3461-3469

Subventions

Organisme : European Regional Development Fund
ID : SBPLY/17/180501/000533
Organisme : Universidad de Castilla-La Mancha
ID : 2018-CPUCLM-7939

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.

Références

Holland A, Carberry S, Ohlendieck K (2014) Proteomics of the dystrophin-glycoprotein complex and dystrophinopathy. Curr Protein Pept Sci 14:680–697. https://doi.org/10.2174/13892037113146660083
doi: 10.2174/13892037113146660083
Warner LE, DelloRusso CT, Crawford RW et al (2002) Expression of Dp260 in muscle tethers the actin cytoskeleton to the dystrophin-glycoprotein complex and partially prevents dystrophy. Hum Mol Genet 11:1095–1105. https://doi.org/10.1093/hmg/11.9.1095
doi: 10.1093/hmg/11.9.1095 pubmed: 11978768
Becker muscular dystrophy | Genetic and Rare Diseases Information Center (GARD)—an NCATS program. https://rarediseases.info.nih.gov/diseases/5900/becker-muscular-dystrophy . Accessed 2 Nov 2021
Mah JK, Korngut L, Dykeman J et al (2014) A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul Disord 24:482–491. https://doi.org/10.1016/j.nmd.2014.03.008
doi: 10.1016/j.nmd.2014.03.008 pubmed: 24780148
Birnkrant DJ, Bushby K, Bann CM et al (2018) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol 17:251–267. https://doi.org/10.1016/S1474-4422(18)30024-3
doi: 10.1016/S1474-4422(18)30024-3 pubmed: 29395989 pmcid: 5869704
Bushby K, Finkel R, Birnkrant DJ et al (2010) Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol 9:177–189. https://doi.org/10.1016/S1474-4422(09)70272-8
doi: 10.1016/S1474-4422(09)70272-8 pubmed: 19945914
Pascual-Morena C, Cavero-Redondo I, Saz-Lara A et al (2021) Genetic modifiers and phenotype of Duchenne muscular dystrophy: a systematic review and meta-analysis. Pharmaceuticals. https://doi.org/10.3390/PH14080798
doi: 10.3390/PH14080798 pubmed: 34451895 pmcid: 8401629
Goemans N (2018) How glucocorticoids change life in Duchenne muscular dystrophy. Lancet 391:406–407. https://doi.org/10.1016/S0140-6736(17)32405-4
doi: 10.1016/S0140-6736(17)32405-4 pubmed: 29174483
Pascual-Morena C, Cavero-Redondo I, Álvarez-Bueno C et al (2020) Restorative treatments of dystrophin expression in Duchenne muscular dystrophy: a systematic review. Ann Clin Transl Neurol 7(acn3):51149. https://doi.org/10.1002/acn3.51149
doi: 10.1002/acn3.51149
Ricotti V, Roberts RG, Muntoni F (2011) Dystrophin and the brain. Dev Med Child Neurol 53:12–12. https://doi.org/10.1111/J.1469-8749.2010.03836.X
doi: 10.1111/J.1469-8749.2010.03836.X pubmed: 21171237
Sekiguchi M, Zushida K, Yoshida M et al (2009) A deficit of brain dystrophin impairs specific amygdala GABAergic transmission and enhances defensive behaviour in mice. Brain 132:124–135. https://doi.org/10.1093/brain/awn253
doi: 10.1093/brain/awn253 pubmed: 18927146
Doorenweerd N (2020) Combining genetics, neuropsychology and neuroimaging to improve understanding of brain involvement in Duchenne muscular dystrophy—a narrative review. Neuromuscul Disord 30:437–442. https://doi.org/10.1016/J.NMD.2020.05.001
doi: 10.1016/J.NMD.2020.05.001 pubmed: 32522501
Daoud F, Candelario-Martínez A, Billar JM et al (2008) Role of mental retardation-associated dystrophin-gene product Dp71 in excitatory synapse organization, synaptic plasticity and behavioral functions. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0006574
doi: 10.1371/JOURNAL.PONE.0006574 pubmed: 19649270
Doorenweerd N, Mahfouz A, van Putten M et al (2017) Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy. Sci Rep 7:12575. https://doi.org/10.1038/s41598-017-12981-5
doi: 10.1038/s41598-017-12981-5 pubmed: 28974727 pmcid: 5626779
Hendriksen RGF, Hoogland G, Schipper S et al (2015) A possible role of dystrophin in neuronal excitability: a review of the current literature. Neurosci Biobehav Rev 51:255–262. https://doi.org/10.1016/j.neubiorev.2015.01.023
doi: 10.1016/j.neubiorev.2015.01.023 pubmed: 25677308
Hendriksen RGF, Schipper S, Hoogland G et al (2016) Dystrophin distribution and expression in human and experimental temporal lobe epilepsy. Front Cell Neurosci 10:174. https://doi.org/10.3389/fncel.2016.00174
doi: 10.3389/fncel.2016.00174 pubmed: 27458343 pmcid: 4937016
Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. J Am Med Assoc 283:2008–2012. https://doi.org/10.1001/jama.283.15.2008
doi: 10.1001/jama.283.15.2008
Higgins JP, Green S (2008) Cochrane handbook for systematic reviews of interventions: Cochrane book series. Wiley, Hoboken
doi: 10.1002/9780470712184
Study Quality Assessment Tools | NHLBI, NIH. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools . Accessed 29 Nov 2021
Tufanaru C, Munn Z, Stephenson M, Aromataris E (2015) Fixed or random effects meta-analysis? Common methodological issues in systematic reviews of effectiveness. Int J Evid Based Healthc 13:196–207. https://doi.org/10.1097/XEB.0000000000000065
doi: 10.1097/XEB.0000000000000065 pubmed: 26355603
DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188. https://doi.org/10.1016/0197-2456(86)90046-2
doi: 10.1016/0197-2456(86)90046-2 pubmed: 3802833
Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558. https://doi.org/10.1002/sim.1186
doi: 10.1002/sim.1186 pubmed: 12111919
Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test measures of funnel plot asymmetry. BMJ 315:629–634. https://doi.org/10.1136/bmj.315.7109.629
doi: 10.1136/bmj.315.7109.629 pubmed: 9310563 pmcid: 2127453
Goodwin F, Muntoni F, Dubowitz V (1997) Epilepsy in Duchenne and Becker muscular dystrophies. Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc 1:115–119. https://doi.org/10.1016/s1090-3798(97)80042-6
doi: 10.1016/s1090-3798(97)80042-6
Latimer R, Street N, Conway KC et al (2017) Secondary conditions among males with Duchenne or Becker muscular dystrophy. J Child Neurol 32:663–670. https://doi.org/10.1177/0883073817701368
doi: 10.1177/0883073817701368 pubmed: 28393671 pmcid: 5502756
Mori-Yoshimura M, Mizuno Y, Yoshida S et al (2019) Psychiatric and neurodevelopmental aspects of Becker muscular dystrophy. Neuromuscul Disord 29:930–939. https://doi.org/10.1016/j.nmd.2019.09.006
doi: 10.1016/j.nmd.2019.09.006 pubmed: 31708335
Etemadifar M, Molael S (2004) Epilepsy in boys with Duchenne muscular dystrophy. J Res Med Sci 9:116–119
Hendriksen RGF, Vles JSH, Aalbers MW et al (2018) Brain-related comorbidities in boys and men with Duchenne Muscular Dystrophy: a descriptive study. Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc 22:488–497. https://doi.org/10.1016/j.ejpn.2017.12.004
doi: 10.1016/j.ejpn.2017.12.004
Pane M, Messina S, Bruno C et al (2013) Duchenne muscular dystrophy and epilepsy. Neuromuscul Disord 23:313–315. https://doi.org/10.1016/j.nmd.2013.01.011
doi: 10.1016/j.nmd.2013.01.011 pubmed: 23465656
Cuijie W, Haipo Y, Xiaona F et al (2015) Duchenne and Becker muscular dystrophy complicated with epilepsy. Zhonghua Er Ke Za Zhi 53:274–279. https://doi.org/10.3760/cma.j.issn.0578-1310.2015.04.009
doi: 10.3760/cma.j.issn.0578-1310.2015.04.009 pubmed: 26182502
Nakamura A, Miyazaki Y, Kumagai T et al (2008) Various central nervous system involvements in dystrophinopathy: clinical and genetic considerations. No To Hattatsu 40:10–14. https://doi.org/10.11251/ojjscn1969.40.10
doi: 10.11251/ojjscn1969.40.10 pubmed: 18210857
Cowan LD, Bodensteiner JB, Leviton A, Doherty L (1989) Prevalence of the epilepsies in children and adolescents. Epilepsia 30:94–106. https://doi.org/10.1111/j.1528-1157.1989.tb05289.x
doi: 10.1111/j.1528-1157.1989.tb05289.x pubmed: 2463913
Fiest KM, Sauro KM, Wiebe S et al (2017) Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies. Neurology 88:296–303. https://doi.org/10.1212/WNL.0000000000003509
doi: 10.1212/WNL.0000000000003509 pubmed: 27986877 pmcid: 5272794
Owolabi LF, Owolabi SD, Taura AA et al (2019) Prevalence and burden of epilepsy in Nigeria: a systematic review and meta-analysis of community-based door-to-door surveys. Epilepsy Behav 92:226–234. https://doi.org/10.1016/j.yebeh.2018.12.017
doi: 10.1016/j.yebeh.2018.12.017 pubmed: 30690324
Owolabi LF, Adamu B, Jibo AM et al (2020) Prevalence of active epilepsy, lifetime epilepsy prevalence, and burden of epilepsy in Sub-Saharan Africa from meta-analysis of door-to-door population-based surveys. Epilepsy Behav 103:106846. https://doi.org/10.1016/j.yebeh.2019.106846
doi: 10.1016/j.yebeh.2019.106846 pubmed: 31941583
Song P, Liu Y, Yu X et al (2017) Prevalence of epilepsy in China between 1990 and 2015: a systematic review and meta-analysis. J Glob Health 7:20706. https://doi.org/10.7189/jogh.07-020706
doi: 10.7189/jogh.07-020706
Sridharan R, Murthy BN (1999) Prevalence and pattern of epilepsy in India. Epilepsia 40:631–636. https://doi.org/10.1111/j.1528-1157.1999.tb05566.x
doi: 10.1111/j.1528-1157.1999.tb05566.x pubmed: 10386533
Lidov HGW, Selig S, Kunkel LM (1995) DP140—a novel 140-Kda CNS transcript from the dystrophin locus. Hum Mol Genet 4:329–335. https://doi.org/10.1093/hmg/4.3.329
doi: 10.1093/hmg/4.3.329 pubmed: 7795584
Morris GE, Simmons C, Nguyen TM (1995) Apo-dystrophins (Dp140 and Dp71) and dystrophin splicing isoforms in developing brain. Biochem Biophys Res Commun 215:361–367. https://doi.org/10.1006/bbrc.1995.2474
doi: 10.1006/bbrc.1995.2474 pubmed: 7575614
Hoogland G, Hendriksen RGF, Slegers RJ et al (2019) The expression of the distal dystrophin isoforms Dp140 and Dp71 in the human epileptic hippocampus in relation to cognitive functioning. Hippocampus 29:102–110. https://doi.org/10.1002/hipo.23015
doi: 10.1002/hipo.23015 pubmed: 30069964
Compston J (2018) Glucocorticoid-induced osteoporosis: an update. Endocrine 61:7–16. https://doi.org/10.1007/s12020-018-1588-2
doi: 10.1007/s12020-018-1588-2 pubmed: 29691807 pmcid: 5997116
Pack A (2008) Bone health in people with epilepsy: is it impaired and what are the risk factors? Seizure 17:181–186. https://doi.org/10.1016/j.seizure.2007.11.020
doi: 10.1016/j.seizure.2007.11.020 pubmed: 18187347
Liu X, Sun X, Sun C et al (2021) Prevalence of epilepsy in autism spectrum disorders: a systematic review and meta-analysis. Autism. https://doi.org/10.1177/13623613211045029
doi: 10.1177/13623613211045029 pubmed: 34825577
Strasser L, Downes M, Kung J et al (2018) Prevalence and risk factors for autism spectrum disorder in epilepsy: a systematic review and meta-analysis. Dev Med Child Neurol 60:19–29. https://doi.org/10.1111/dmcn.13598
doi: 10.1111/dmcn.13598 pubmed: 29119560
Ashjazadeh N, Sahraeian A, Sabzgolin I, Asadi-Pooya AA (2019) Attention-deficit hyperactivity disorder in adults with epilepsy. Epilepsy Behav 101:106543. https://doi.org/10.1016/j.yebeh.2019.106543
doi: 10.1016/j.yebeh.2019.106543 pubmed: 31698258
Wang M, Zhao Q, Kang H, Zhu S (2020) Attention deficit hyperactivity disorder (ADHD) in children with epilepsy. Ir J Med Sci 189:305–313. https://doi.org/10.1007/s11845-019-02042-3
doi: 10.1007/s11845-019-02042-3 pubmed: 31187336
Błaszczyk B, Czuczwar SJ (2016) Epilepsy coexisting with depression. Pharmacol Rep 68:1084–1092. https://doi.org/10.1016/j.pharep.2016.06.011
doi: 10.1016/j.pharep.2016.06.011 pubmed: 27634589
Goyenvalle A, Griffith G, Babbs A et al (2015) Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat Med 21:270. https://doi.org/10.1038/nm.3765
doi: 10.1038/nm.3765 pubmed: 25642938

Auteurs

Carlos Pascual-Morena (C)

Health and Social Research Center, Universidad de Castilla-La Mancha, 16071, Cuenca, Spain.

Vicente Martínez-Vizcaíno (V)

Health and Social Research Center, Universidad de Castilla-La Mancha, 16071, Cuenca, Spain.
Facultad de Ciencias de La Salud, Universidad Autónoma de Chile, 3460000, Talca, Chile.

Alicia Saz-Lara (A)

Health and Social Research Center, Universidad de Castilla-La Mancha, 16071, Cuenca, Spain. alicia.delsaz@uclm.es.

José Francisco López-Gil (JF)

Health and Social Research Center, Universidad de Castilla-La Mancha, 16071, Cuenca, Spain.

Jaime Fernández-Bravo-Rodrigo (J)

Health and Social Research Center, Universidad de Castilla-La Mancha, 16071, Cuenca, Spain.
Pharmacy Service, Hospital Virgen de La Luz, 16002, Cuenca, Spain.

Iván Cavero-Redondo (I)

Health and Social Research Center, Universidad de Castilla-La Mancha, 16071, Cuenca, Spain.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH