Nitrate transporter NRT1.1 and anion channel SLAH3 form a functional unit to regulate nitrate-dependent alleviation of ammonium toxicity.


Journal

Journal of integrative plant biology
ISSN: 1744-7909
Titre abrégé: J Integr Plant Biol
Pays: China (Republic : 1949- )
ID NLM: 101250502

Informations de publication

Date de publication:
Apr 2022
Historique:
received: 15 01 2022
accepted: 27 02 2022
pubmed: 2 3 2022
medline: 20 4 2022
entrez: 1 3 2022
Statut: ppublish

Résumé

Ammonium (NH

Identifiants

pubmed: 35229477
doi: 10.1111/jipb.13239
doi:

Substances chimiques

Ammonium Compounds 0
Anion Transport Proteins 0
Anions 0
Arabidopsis Proteins 0
Ion Channels 0
NRT1.1 protein, Arabidopsis 0
Nitrate Transporters 0
Nitrates 0
Plant Proteins 0
SLAH3 protein, Arabidopsis 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

942-957

Subventions

Organisme : National Natural Science Foundation of China
Organisme : 111 Project
Organisme : Fundamental Research Funds for the Central Universities

Informations de copyright

© 2022 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

Références

Bittsanszky, A., Pilinszky, K., Gyulai, G., and Komives, T. (2015). Overcoming ammonium toxicity. Plant Sci. 231: 184-190.
Bloom, A.J., Burger, M., Asensio, J.S.R., and Cousins, A.B. (2010). Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328: 899-903.
Bouguyon, E., Brun, F., Meynard, D., Kubes, M., Pervent, M., Leran, S., Lacombe, B., Krouk, G., Guiderdoni, E., Zazimalova, E., Hoyerova, K., Nacry, P., and Gojon, A. (2015). Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nat. Plants 1: 15015.
Breemen, N.V., Driscoll, C.T., and Mulder, J. (1984). Acidic deposition and internal proton sources in acidification of soils and waters. Nature 307: 599-604.
Britto, D.T., and Kronzucker, H.J. (2002). NH4+ toxicity in higher plants: A critical review. J. Plant Physiol. 159: 567-584.
Britto, D.T., Siddiqi, M.Y., Glass, A.D.M., and Kronzucker, H.J. (2001). Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proc. Natl. Acad. Sci. U.S.A 98: 4255-4258.
Chen, L., and Liao, H. (2017). Engineering crop nutrient efficiency for sustainable agriculture. J. Integr. Plant Biol. 59: 710-735.
Coleto, I., Bejarano, I., Marin-Pena, A.J., Medina, J., Rioja, C., Burow, M., and Marino, D. (2021). Arabidopsis thaliana transcription factors MYB28 and MYB29 shape ammonium stress responses by regulating Fe homeostasis. New Phytol. 229: 1021-1035.
Du, W., Zhang, Y., Si, J., Zhang, Y., Fan, S., Xia, H., and Kong, L. (2021). Nitrate alleviates ammonium toxicity in wheat (Triticum aestivum L.) by regulating tricarboxylic acid cycle and reducing rhizospheric acidification and oxidative damage. Plant Signal. Behav. 9: 1991687.
Escobar, M.A., Geisler, D.A., and Rasmusson, A.G. (2006). Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: Opposing effects of ammonium and nitrate. Plant J. 45: 775-788.
Esteban, R., Ariz, I., Cruz, C., and Moran, J.F. (2016). Mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci. 248: 92-101.
Fan, W., Lou, H.Q., Gong, Y.L., Liu, M.Y., Cao, M.J., Liu, Y., Yang, J.L., and Zheng, S.J. (2015). Characterization of an inducible C2H2-type zinc finger transcription factor VuSTOP1 in rice bean (Vigna umbellata) reveals differential regulation between low pH and aluminum tolerance mechanisms. New Phytol. 208: 456-468.
Fang, X.Z., Tian, W.H., Liu, X.X., Lin, X.Y., Jin, C.W., and Zheng, S.J. (2016). Alleviation of proton toxicity by nitrate uptake specifically depends on nitrate transporter 1.1 in Arabidopsis. New Phytol. 211: 149-158.
Gazzarrini, S., Lejay, L., Gojon, A., Ninnemann, O., Frommer, W.B., and von Wirén, N. (1999). Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11: 937-948.
Gerendás, J., Zhu, Z., Bendixen, R., Ratcliffe, R.G., and Sattelmacher, B. (1997). Physiological and biochemical processes related to ammonium toxicity in higher plants. J. Plant Nutr. Soil Sci. 160: 239-251.
Hachiya, T., Inaba, J., Wakazaki, M., Sato, M., Toyooka, K., Miyagi, A., Kawai-Yamada, M., Sugiura, D., Nakagawa, T., Kiba, T., Gojon, A., and Sakakibara, H. (2021). Excessive ammonium assimilation by plastidic glutamine synthetase causes ammonium toxicity in Arabidopsis thaliana. Nat. Commun. 12: 4944.
Hachiya, T., Mizokami, Y., Miyata, K., Tholen, D., Watanabe, C.K., and Noguchi, K. (2011). Evidence for a nitrate-independent function of the nitrate sensor NRT1.1 in Arabidopsis thaliana. J. Plant Res. 124: 425-430.
Hachiya, T., and Noguchi, K. (2011). Mutation of NRT1.1 enhances ammonium/low pH-tolerance in Arabiopsis thaliana. Plant Signal. Behav. 6: 706-708.
Hachiya, T., Watanabe, C.K., Fujimoto, M., Ishikawa, T., Takahara, K., Kawai-Yamada, M., Uchimiya, H., Uesono, Y., Terashima, I., and Noguchi, K. (2012). Nitrate addition alleviates ammonium toxicity without lessening ammonium accumulation, organic acid depletion and inorganic cation depletion in Arabidopsis thaliana shoots. Plant Cell Physiol. 53: 577-591.
Ho, C.H., Lin, S.H., Hu, H.C., and Tsay, Y.F. (2009). CHL1 functions as a nitrate sensor in plants. Cell 138: 1184-1194.
Hoffmann, A., Milde, S., Desel, C., Hümpel, A., Kaiser, H., Hammes, E., Piippo, M., Soitamo, A., Aro, E.M., and Gerendás, J. (2007). N form-dependent growth retardation of Arabidopsis thaliana seedlings as revealed from physiological and microarray studies. J. Plant Nutr. Soil Sci. 170: 87-97.
Huang, N.C., Chiang, C.S., Crawford, N.M., and Tsay, Y.F. (1996). CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots. Plant Cell 8: 2183-2191.
Iuchi, S., Koyama, H., Iuchi, A., Kobayashi, Y., Kitabayashi, S., Kobayashi, Y., Ikka, T., Hirayama, T., Shinozaki, K., and Kobayashi, M. (2007). Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc. Natl. Acad. Sci. U.S.A. 104: 9900-9905.
Jian, S., Liao, Q., Song, H., Liu, Q., Lepo, J.E., Guan, C., Zhang, J., Ismail, A.M., and Zhang, Z. (2018). NRT1.1-related NH4+ toxicity is associated with a disturbed balance between NH4+ uptake and assimilation. Plant Physiol. 178: 1473-1488.
Kanwar, P., Sanyal, S.K., Mahiwal, S., Ravi, B., Kaur, K., Fernandes, J.L., Yadav, A.K., Tokas, I., Srivastava, A.K., Suprasanna, P., and Pandey, G.K. (2022). CIPK9 targets VDAC3 and modulates oxidative stress responses in Arabidopsis. Plant J. 109: 241-260.
Kobayashi, Y., Ohyama, Y., Kobayashi, Y., Ito, H., Iuchi, S., Fujita, M., Zhao, C.R., Tanveer, T., Ganesan, M., Kobayashi, M., and Koyama, H. (2014). STOP2 activates transcription of several genes for Al- and low pH-tolerance that are regulated by STOP1 in Arabidopsis. Mol. Plant 7: 311-322.
Kronzucker, H.J., Britto, D.T., Davenport, R.J., and Tester, M. (2001). Ammonium toxicity and the real cost of transport. Trends Plant Sci. 6: 335-337.
Lager, I., Andréasson, O., Dunbar, T.L., Andreasson, E., Escobar, M.A., and Rasmusson, A.G. (2010). Changes in external pH rapidly alter plant gene expression and modulate auxin and elicitor responses. Plant Cell Environ. 33: 1513-1528.
Lehmann, J., Jorgensen, M.E., Fratz, S., Muller, H.M., Kusch, J., Scherzer, S., Navarro-Retamal, C., Mayer, D., Bohm, J., Konrad, K.R., Terpitz, U., Dreyer, I., Mueller, T.D., Sauer, M., Hedrich, R., Geiger, D., and Maierhofer, T. (2021). Acidosis-induced activation of anion channel SLAH3 in the flooding-related stress response of Arabidopsis. Curr. Biol. 31: 3575-3585.
Li, B., Li, G., Kronzucker, H.J., Baluska, F., and Shi, W. (2014). Ammonium stress in Arabidopsis: Signaling, genetic loci, and physiological targets. Trends Plant Sci. 19: 107-114.
Liu, K., and Tsay, Y. (2003). Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J. 22: 1005-1013.
Liu, Y., and von Wiren, N. (2017). Ammonium as a signal for physiological and morphological responses in plants. J. Exp. Bot. 68: 2581-2592.
Nacry, P., Bouguyon, E., and Gojon, A. (2013). Nitrogen acquisition by roots: Physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370: 1-29.
Oldroyd, G.E., and Dixon, R. (2014). Biotechnological solutions to the nitrogen problem. Curr. Opin. Biotechnol. 26: 19-24.
Palmer, S.M., and Driscoll, C.T. (2002). Acidic deposition: Decline in mobilization of toxic aluminium. Nature 417: 242-243.
Parker, J.L., and Newstead, S. (2014). Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507: 68-72.
Patterson, K., Cakmak, T., Cooper, A., Lager, I., Rasmusson, A.G., and Escobar, M.A. (2010). Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants. Plant Cell Environ. 33: 1486-1501.
Peccia, J., Haznedaroglu, B., Gutierrez, J., and Zimmerman, J.B. (2013). Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends Biotechnol. 31: 134-138.
Robertson, G.P., and Vitousek, P.M. (2009). Nitrogen in agriculture: Balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 34: 97-125.
Roosta, H.R., and Schjoerring, J.K. (2007). Effects of ammonium toxicity on nitrogen metabolism and elemental profile of cucumber plants. J. Plant Nutr. 30: 1933-1951.
Sawaki, Y., Iuchi, S., Kobayashi, Y., Kobayashi, Y., Ikka, T., Sakurai, N., Fujita, M., Shinozaki, K., Shibata, D., Kobayashi, M., and Koyama, H. (2009). STOP1 regulates multiple genes that protect arabidopsis from proton and aluminum toxicities. Plant Physiol. 150: 281-294.
Stoddard, J.L., Jeffries, D.S., Lükewille, A., Clair, T.A., and Wilander, A. (1999). Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401: 575-578.
Sun, D., Fang, X., Xiao, C., Ma, Z., Huang, X., Su, J., Li, J., Wang, J., Wang, S., Luan, S., and He, K. (2021). Kinase SnRK1.1 regulates nitrate channel SLAH3 engaged in nitrate-dependent alleviation of ammonium toxicity. Plant Physiol. 186: 731-749.
Sun, J., Bankston, J.R., Payandeh, J., Hinds, T.R., Zagotta, W.N., and Zheng, N. (2014). Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507: 73-77.
Sun, J., Chen, S., Dai, S., Wang, R., Li, N., Shen, X., Zhou, X., Lu, C., Zheng, X., Hu, Z., Zhang, Z., Song, J., and Xu, Y. (2009). NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol. 149: 1141-1153.
Tegeder, M., and Masclaux-Daubresse, C. (2018). Source and sink mechanisms of nitrogen transport and use. New Phytol. 217: 35-53.
Tsay, Y.-F., Schroeder, J.I., Feldmann, K.A., and Crawford, N.M. (1993). The herbicide sensitivity gene CHL1 of arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72: 705-713.
Wang, F., Gao, J., Tian, Z., Liu, Y., Abid, M., Jiang, D., Cao, W., and Dai, T. (2016). Adaptation to rhizosphere acidification is a necessary prerequisite for wheat (Triticum aestivum L.) seedling resistance to ammonium stress. Plant Physiol. Biochem. 108: 447-455.
Wang, R., Tischner, R., Gutiérrez, R.A., Hoffman, M., Xing, X., Chen, M., Coruzzi, G., and Crawford, N.M. (2004). Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol. 136: 2512.
Wang, X., Feng, C., Tian, L., Hou, C., Tian, W., Hu, B., Zhang, Q., Ren, Z., Niu, Q., Song, J., Kong, D., Liu, L., He, Y., Ma, L., Chu, C., Luan, S., and Li, L. (2021). A transceptor-channel complex couples nitrate sensing to calcium signaling in Arabidopsis. Mol. Plant 14: 774-786.
Wang, Z.P., Xing, H.L., Dong, L., Zhang, H.Y., Han, C.Y., Wang, X.C., and Chen, Q.J. (2015). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 16: 144.
Wu, W., Lin, Y., Chen, Q., Peng, W., Peng, J., Tian, J., Liang, C., and Liao, H. (2018). Functional conservation and divergence of soybean GmSTOP1 members in proton and aluminum tolerance. Front. Plant Sci. 9: 570.
Xie, Y., Mao, Y., Xu, S., Zhou, H., Duan, X., Cui, W., Zhang, J., and Xu, G. (2015). Heme-heme oxygenase 1 system is involved in ammonium tolerance by regulating antioxidant defence in Oryza sativa. Plant Cell Environ. 38: 129-143.
Xu, G., Fan, X., and Miller, A.J. (2012). Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 63: 153-182.
Xu, Q.F., Tsai, C.L., and Tsai, C.Y. (1992). Interaction of potassium with the form and amount of nitrogen nutrition on growth and nitrogen uptake of maize. J. Plant Nutr. 15: 23-33.
Ye, J.Y., Tian, W.H., Zhou, M., Zhu, Q.Y., Du, W.X., Zhu, Y.X., Liu, X.X., Lin, X.Y., Zheng, S.J., and Jin, C.W. (2021). STOP1 activates NRT1.1-mediated nitrate uptake to create a favorable rhizospheric pH for plant adaptation to acidity. Plant Cell 33: 3658-3674.
Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2: 1565-1572.
Yuan, L., Loque, D., Kojima, S., Rauch, S., Ishiyama, K., Inoue, E., Takahashi, H., and Wiren, N. (2007). The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. Plant Cell 19: 2636-2652.
Zhao, L., and Wang, Y. (2017). Nitrate assay for plant tissues. Bio. Protoc. 7: e2029.
Zhao, X.Q., and Shen, R.F. (2018). Aluminum-nitrogen interactions in the soil-plant system. Front. Plant Sci. 9: 807.
Zheng, X., He, K., Kleist, T., Chen, F., and Luan, S. (2015). Anion channel SLAH3 functions in nitrate-dependent alleviation of ammonium toxicity in Arabidopsis. Plant Cell Environ. 38: 474-486.

Auteurs

Chengbin Xiao (C)

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.

Doudou Sun (D)

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
School of Life Sciences, Henan Agricultural University, Zhengzhou, 450000, China.

Beibei Liu (B)

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.

Xianming Fang (X)

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.

Pengcheng Li (P)

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.

Yao Jiang (Y)

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.

Mingming He (M)

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.

Jia Li (J)

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.

Sheng Luan (S)

Department of Plant and Microbial Biology, University of California, Berkeley, 94720, CA, USA.

Kai He (K)

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis

Classifications MeSH