Identification of active gaseous-alkane degraders at natural gas seeps.
Journal
The ISME journal
ISSN: 1751-7370
Titre abrégé: ISME J
Pays: England
ID NLM: 101301086
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
received:
28
09
2021
accepted:
04
02
2022
revised:
30
01
2022
pubmed:
24
3
2022
medline:
24
6
2022
entrez:
23
3
2022
Statut:
ppublish
Résumé
Natural gas seeps release significant amounts of methane and other gases including ethane and propane contributing to global climate change. In this study, bacterial actively consuming short-chain alkanes were identified by cultivation, whole-genome sequencing, and stable-isotope probing (SIP)-metagenomics using
Identifiants
pubmed: 35319019
doi: 10.1038/s41396-022-01211-0
pii: 10.1038/s41396-022-01211-0
pmc: PMC9213486
doi:
Substances chimiques
Alkanes
0
Butanes
0
Gases
0
Natural Gas
0
Mixed Function Oxygenases
EC 1.-
Ethane
L99N5N533T
Propane
T75W9911L6
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1705-1716Subventions
Organisme : Leverhulme Trust
ID : ECF-2016-626
Organisme : Leverhulme Trust
ID : RPG2016-050
Informations de copyright
© 2022. The Author(s).
Références
Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, et al. The global methane budget 2000–2017. Earth Syst Sci Data. 2020;12:1561–623.
doi: 10.5194/essd-12-1561-2020
Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, et al. “Anthropogenic and natural radiative forcing”. In: Stocker TF, et al. Eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press; 2013. chap. 8
Reddy CM, Arey JS, Seewald JS, Sylva SP, Lemkau KL, Nelson RK, et al. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc Natl Acad Sci USA. 2012;109:20229–34.
pubmed: 21768331
doi: 10.1073/pnas.1101242108
Etiope G, Schwietzke S. Global geological methane emissions: an update of top-down and bottom-up estimates. Elementa. 2019;7:47.
Mazzini A, Sciarra A, Etiope G, Sadavarte P, Houweling S, Pandey S, et al. Relevant methane emission to the atmosphere from a geological gas manifestation. Sci Rep. 2021;11:4138.
pubmed: 33602990
pmcid: 7892996
doi: 10.1038/s41598-021-83369-9
Pozzer A, Jöckel P, Tost H, Sander R, Ganzeveld L, Kerkweg A, et al. Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observations. Atmos Chem Phys. 2007;7:2527–50.
doi: 10.5194/acp-7-2527-2007
Dalsøren SB, Myhre G, Hodnebrog Ø, Myhre CL, Stohl A, Pisso I, et al. Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions. Nat Geosci. 2018;11:178–84.
doi: 10.1038/s41561-018-0073-0
Etiope G, Ciccioli P. Earth’s degassing: a missing ethane and propane source. Science 2009;323:478.
pubmed: 19164741
doi: 10.1126/science.1165904
Etiope G, Drobniak A, Schimmelmann A. Natural seepage of shale gas and the origin of “eternal flames” in the Northern Appalachian Basin, USA. Mar Pet Geol. 2013;43:178–86.
doi: 10.1016/j.marpetgeo.2013.02.009
Farhan Ul Haque M, Crombie AT, Ensminger SA, Baciu C, Murrell JC. Facultative methanotrophs are abundant at terrestrial natural gas seeps. Microbiome 2018;6:118.
pubmed: 29954460
pmcid: 6022506
doi: 10.1186/s40168-018-0500-x
Schimmelmann A, Ensminger SA, Drobniak A, Mastalerz M, Etiope G, Jacobi RD, et al. Natural geological seepage of hydrocarbon gas in the Appalachian Basin and Midwest USA in relation to shale tectonic fracturing and past industrial hydrocarbon production. Sci Total Environ. 2018;644:982–93.
pubmed: 30743895
doi: 10.1016/j.scitotenv.2018.06.374
Lelieveld JOS, Crutzen PJ, Dentener FJ. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus B Chem Phys Meteorol. 1998;50:128–50.
doi: 10.3402/tellusb.v50i2.16030
Hodnebrog Ø, Dalsøren SB, Myhre G. Lifetimes, direct and indirect radiative forcing, and global warming potentials of ethane (C2H6), propane (C3H8), and butane (C4H10). Atmos Sci Lett. 2018;19:e804.
doi: 10.1002/asl.804
Reeburgh WS, Global methane biogeochemistry in Treatise on Geochemistry, HD Holland, KK Turekian, Eds. (Elsevier, Amsterdam, 2007), pp. 1-32.
Trotsenko YA, Murrell JC. Metabolic aspects of aerobic obligate methanotrophy. In: Allen SS, Laskin I, Geoffrey MG, Eds. Advances in Applied Microbiology. Academic Press; 2008. p. 183–229. vol. 63.
Leahy JG, Batchelor PJ, Morcomb SM. Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev. 2003;27:449–79.
pubmed: 14550940
doi: 10.1016/S0168-6445(03)00023-8
Holmes AJ, Coleman NV. Evolutionary ecology and multidisciplinary approaches to prospecting for monooxygenases as biocatalysts. Antonie Van Leeuwenhoek. 2008;94:75–84.
pubmed: 18283556
doi: 10.1007/s10482-008-9227-1
Crombie AT, Murrell JC. Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 2014;510:148–51.
pubmed: 24776799
doi: 10.1038/nature13192
Farhan Ul Haque M, Xu H-J, Murrell JC, Crombie A. Facultative methanotrophs – diversity, genetics, molecular ecology and biotechnological potential: a mini-review. Microbiology 2020;166:894–908.
pubmed: 33085587
pmcid: 7660913
doi: 10.1099/mic.0.000977
Rahman MT, Crombie A, Chen Y, Stralis-Pavese N, Bodrossy L, Meir P, et al. Environmental distribution and abundance of the facultative methanotroph Methylocella. ISME J. 2011;5:1061–6.
pubmed: 21160537
doi: 10.1038/ismej.2010.190
Dedysh SN. Exploring methanotroph diversity in acidic northern wetlands: molecular and cultivation-based studies. Microbiology 2009;78:655–69.
doi: 10.1134/S0026261709060010
Gupta RS, Lo B, Son J. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front Microbiol. 2018;9:67.
pubmed: 29497402
pmcid: 5819568
doi: 10.3389/fmicb.2018.00067
Hamamura N, Yeager CM, Arp DJ. Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8. Appl Environ Microbiol. 2001;67:4992–8.
pubmed: 11679317
pmcid: 93262
doi: 10.1128/AEM.67.11.4992-4998.2001
Kotani T, Kawashima Y, Yurimoto H, Kato N, Sakai Y. Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7. J Biosci Bioeng. 2006;102:184–92.
pubmed: 17046531
doi: 10.1263/jbb.102.184
Coleman NV, Yau S, Wilson NL, Nolan LM, Migocki MD, Ly M, et al. Untangling the multiple monooxygenases of Mycobacterium chubuense strain NBB4, a versatile hydrocarbon degrader. Environ Microbiol Rep. 2011;3:297–307.
pubmed: 23761275
doi: 10.1111/j.1758-2229.2010.00225.x
Ashraf W, Mihdhir A, Murrell JC. Bacterial oxidation of propane. FEMS Microbiol Lett. 1994;122:1–6.
pubmed: 7958761
doi: 10.1111/j.1574-6968.1994.tb07134.x
Cappelletti M, Presentato A, Milazzo G, Turner RJ, Fedi S, Frascari D, et al. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes. Front Microbiol. 2015;6:393.
pubmed: 26029173
pmcid: 4428276
doi: 10.3389/fmicb.2015.00393
Johnson EL, Hyman MR. Propane and n-butane oxidation by Pseudomonas putida GPo1. Appl Environ Microbiol. 2006;72:950–2.
pubmed: 16391142
pmcid: 1352225
doi: 10.1128/AEM.72.1.950-952.2006
Dubbels BL, Sayavedra-Soto LA, Bottomley PJ, Arp DJ. Thauera butanivorans sp. nov., a C2–C9 alkane-oxidizing bacterium previously referred to as ‘Pseudomonas butanovora’. Int J Syst Evol Microbiol. 2009;59:1576–8.
pubmed: 19528200
pmcid: 2889399
doi: 10.1099/ijs.0.000638-0
Rojo F. Degradation of alkanes by bacteria. Environ Microbiol. 2009;11:2477–90.
pubmed: 19807712
doi: 10.1111/j.1462-2920.2009.01948.x
Shennan JL. Utilisation of C2–C4 gaseous hydrocarbons and isoprene by microorganisms. J Chem Technol Biotechnol. 2006;81:237–56.
doi: 10.1002/jctb.1388
Coleman NV, Bui NB, Holmes AJ. Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environ Microbiol. 2006;8:1228–39.
pubmed: 16817931
doi: 10.1111/j.1462-2920.2006.01015.x
Osborne CD, Haritos VS. Beneath the surface: evolution of methane activity in the bacterial multicomponent monooxygenases. Mol Phylogenet Evol. 2019;139:106527.
pubmed: 31173882
doi: 10.1016/j.ympev.2019.106527
Sluis MK, Sayavedra-Soto LA, Arp DJ. Molecular analysis of the soluble butane monooxygenase from ‘Pseudomonas butanovora’. Microbiology 2002;148:3617–29.
pubmed: 12427952
doi: 10.1099/00221287-148-11-3617
Martin KE, Ozsvar J, Coleman NV. SmoXYB1C1Z of Mycobacterium sp. strain NBB4: a soluble methane monooxygenase (sMMO)-like enzyme, active on C2 to C4 alkanes and alkenes. Appl Environ Microbiol. 2014;80:5801–6.
pubmed: 25015887
pmcid: 4178599
doi: 10.1128/AEM.01338-14
Coleman NV, Le NB, Ly MA, Ogawa HE, McCarl V, Wilson NL, et al. Hydrocarbon monooxygenase in Mycobacterium: recombinant expression of a member of the ammonia monooxygenase superfamily. ISME J. 2012;6:171–82.
pubmed: 21796219
doi: 10.1038/ismej.2011.98
Khadka R, Clothier L, Wang L, Lim CK, Klotz MG, Dunfield PF. Evolutionary history of copper membrane monooxygenases. Front Microbiol. 2018;9:2493.
pubmed: 30420840
pmcid: 6215863
doi: 10.3389/fmicb.2018.02493
Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N. Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol. 2003;185:7120–8.
pubmed: 14645271
pmcid: 296251
doi: 10.1128/JB.185.24.7120-7128.2003
Redmond MC, Valentine DL, Sessions AL. Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing. Appl Environ Microbiol. 2010;76:6412–22.
pubmed: 20675448
pmcid: 2950463
doi: 10.1128/AEM.00271-10
Li M, Jain S, Baker BJ, Taylor C, Dick GJ. Novel hydrocarbon monooxygenase genes in the metatranscriptome of a natural deep-sea hydrocarbon plume. Environ Microbiol. 2014;16:60–71.
pubmed: 23826624
doi: 10.1111/1462-2920.12182
Crombie AT, Larke-Mejia NL, Emery H, Dawson R, Pratscher J, Murphy GP, et al. Poplar phyllosphere harbors disparate isoprene-degrading bacteria. Proc Natl Acad Sci USA. 2018;115:13081–6.
pubmed: 30498029
pmcid: 6304962
doi: 10.1073/pnas.1812668115
Qi M, Huang H, Zhang Y, Wang H, Li H, Lu Z. Novel tetrahydrofuran (THF) degradation-associated genes and cooperation patterns of a THF-degrading microbial community as revealed by metagenomic. Chemosphere 2019;231:173–83.
pubmed: 31129398
doi: 10.1016/j.chemosphere.2019.05.137
Rochman FF, Kwon M, Khadka R, Tamas I, Lopez-Jauregui AA, Sheremet A, et al. Novel copper-containing membrane monooxygenases (CuMMOs) encoded by alkane-utilizing Betaproteobacteria. ISME J. 2020;14:714–26.
pubmed: 31796935
doi: 10.1038/s41396-019-0561-2
Dumont MG, Murrell JC. Stable isotope probing - linking microbial identity to function. Nat Rev Microbiol. 2005;3:499–504.
pubmed: 15886694
doi: 10.1038/nrmicro1162
Dumont MG, Hernández García M, Eds. Stable isotope probing; methods and protocols. Totowa, NJ, US: Humana Press; 2019. p. 247. 10.1007/978-1-4939-9721-3.
Baciu C, Ionescu A, Etiope G. Hydrocarbon seeps in Romania: gas origin and release to the atmosphere. Mar Pet Geol. 2018;89:130–43.
doi: 10.1016/j.marpetgeo.2017.06.015
Farhan Ul Haque M, Crombie AT, Murrell JC. Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps. Microbiome 2019;7:134.
pubmed: 31585550
pmcid: 6778391
doi: 10.1186/s40168-019-0741-3
Vallenet D, Engelen S, Mornico D, Cruveiller S, Fleury L, Lajus A, et al. MicroScope: a platform for microbial genome annotation and comparative genomics. Database (Oxf). 2009;2009:bap021.
Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, et al. DNA stable-isotope probing. Nat Protoc. 2007;2:860–6.
pubmed: 17446886
doi: 10.1038/nprot.2007.109
Jia Z, Cao W, Hernández García M. DNA-based stable isotope probing. In: Dumont MG, Hernández García M, Eds. Stable Isotope Probing: Methods and Protocols. New York, NY: Springer New York; 2019. p. 17–29. chap. 2.
doi: 10.1007/978-1-4939-9721-3_2
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.
pubmed: 22933715
doi: 10.1093/nar/gks808
Andrews S. (2010) FastQC: a quality control tool for high throughput sequence data.
Bushnell B, Rood J, Singer E. BBMerge - Accurate paired shotgun read merging via overlap. PloS one. 2017;12:e0185056–e0185056.
pubmed: 29073143
pmcid: 5657622
doi: 10.1371/journal.pone.0185056
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.
pubmed: 22506599
pmcid: 3342519
doi: 10.1089/cmb.2012.0021
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
pubmed: 28298430
pmcid: 5411777
doi: 10.1101/gr.213959.116
Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 2018;6:158.
pubmed: 30219103
pmcid: 6138922
doi: 10.1186/s40168-018-0541-1
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
pubmed: 25977477
pmcid: 4484387
doi: 10.1101/gr.186072.114
Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.
pubmed: 28742071
pmcid: 5702732
doi: 10.1038/ismej.2017.126
Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7:203–14.
pubmed: 10890397
doi: 10.1089/10665270050081478
Hernández M, Vera-Gargallo B, Calabi-Floody M, King GM, Conrad R, Tebbe CC. Reconstructing genomes of carbon monoxide oxidisers in volcanic deposits including members of the class Ktedonobacteria. Microorganisms 2020;8:1880.
pmcid: 7761526
doi: 10.3390/microorganisms8121880
Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr. 2016;4:e1900v1901.
Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res. 2019;47:W276–82.
pubmed: 30997504
pmcid: 6602446
doi: 10.1093/nar/gkz282
Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA. 2009. https://doi.org/10.1073/pnas.0906412106.
doi: 10.1073/pnas.0906412106.
pubmed: 19855009
pmcid: 2776425
Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe. 2014;9:111–8.
Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929–31.
pubmed: 26576653
doi: 10.1093/bioinformatics/btv681
Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10:2182.
pubmed: 31097708
pmcid: 6522516
doi: 10.1038/s41467-019-10210-3
Stecher G, Tamura K, Kumar S. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol Biol Evol. 2020;37:1237–9.
pubmed: 31904846
pmcid: 7086165
doi: 10.1093/molbev/msz312
Small FJ, Ensign SA. Alkene monooxygenase from Xanthobacter strain Py2. J Biol Chem. 1997;272:24913–20.
pubmed: 9312093
doi: 10.1074/jbc.272.40.24913
Imhoff JF. Transfer of Rhodopseudomonas acidophila to the new genus Rhodoblastus as Rhodoblastus acidophilus gen. nov., comb. nov. Int J Syst Evol Microbiol. 2001;51:1863–6.
pubmed: 11594619
doi: 10.1099/00207713-51-5-1863
Zhang Y, Zhang J, Fang C, Pang H, Fan J. Mycobacterium litorale sp. nov., a rapidly growing mycobacterium from soil. Int J Syst Evol Microbiol. 2012;62:1204–7.
pubmed: 21742818
doi: 10.1099/ijs.0.033449-0
Bertoni G, Martino M, Galli E, Barbieri P. Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl Environ Microbiol. 1998;64:3626–32.
pubmed: 9758777
pmcid: 106479
doi: 10.1128/AEM.64.10.3626-3632.1998
Sayavedra-Soto LA, Hamamura N, Liu C-W, Kimbrel JA, Chang JH, Arp DJ. The membrane-associated monooxygenase in the butane-oxidizing Gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family. Environ Microbiol Rep. 2011;3:390–6.
pubmed: 23761285
doi: 10.1111/j.1758-2229.2010.00239.x
Tavormina PL, Orphan VJ, Kalyuzhnaya MG, Jetten MSM, Klotz MG. A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep. 2011;3:91–100.
pubmed: 23761236
doi: 10.1111/j.1758-2229.2010.00192.x
Picone N, Mohammadi SS, Waajen AC, van Alen TA, Jetten MSM, Pol A, et al. More than a methanotroph: a broader substrate spectrum for Methylacidiphilum fumariolicum SolV. Front Microbiol. 2020;11:604485.
pubmed: 33381099
pmcid: 7768010
doi: 10.3389/fmicb.2020.604485
Awala SI, Gwak J-H, Kim Y-M, Kim S-J, Strazzulli A, Dunfield PF, et al. Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone. ISME J. 2021. https://doi.org/10.1038/s41396-021-01037-2 .
doi: 10.1038/s41396-021-01037-2
pubmed: 34158629
pmcid: 8630023
Zou B, Huang Y, Zhang P-P, Ding X-M, Camp HJMOD, Quan Z-X, et al. Horizontal gene transfer of genes encoding copper-containing membrane-bound monooxygenase (CuMMO) and soluble di-iron monooxygenase (SDIMO) in ethane- and propane-oxidizing Rhodococcus bacteria. Appl Environ Microbiol. 2021;87:e00227–00221.
pmcid: 8231442
doi: 10.1128/AEM.00227-21