The Progress of Decellularized Scaffold in Stomatology.


Journal

Tissue engineering and regenerative medicine
ISSN: 2212-5469
Titre abrégé: Tissue Eng Regen Med
Pays: Korea (South)
ID NLM: 101699923

Informations de publication

Date de publication:
06 2022
Historique:
received: 18 09 2021
accepted: 05 01 2022
revised: 26 12 2021
pubmed: 24 3 2022
medline: 27 5 2022
entrez: 23 3 2022
Statut: ppublish

Résumé

The oral and maxillofacial region contains oral organs and facial soft tissues. Due to the complexity of the structures and functions of this region, the repair of related defects is complicated. Different degrees of defects require different repair methods, which involve a great combination of medicine and art, and the material requirements are extremely high. Hence, clinicians are plagued by contemporary oral repair materials due to the limitations of bone harvesting, immune rejection, low osteogenic activity and other problems. Decellularized extracellular matrix has attracted much attention as a bioactive scaffold material because of its nonimmunogenic properties, good osteogenic properties, slow release of growth factors, promotion of seed cell adhesion and maintenance of stem cell characteristics. This article reviews the sources, preparation methods, application and research progress of extracellular matrix materials in the repair of oral and maxillofacial defects to provide an overview for fundamental research and clinical development.

Identifiants

pubmed: 35320505
doi: 10.1007/s13770-022-00432-w
pii: 10.1007/s13770-022-00432-w
pmc: PMC9130370
doi:

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

451-461

Informations de copyright

© 2022. The Korean Tissue Engineering and Regenerative Medicine Society.

Références

Matoug-Elwerfelli M, Duggal MS, Nazzal H, Esteves F, Raïf E. A biocompatible decellularized pulp scaffold for regenerative endodontics. Int Endod J. 2018;51:663–73.
doi: 10.1111/iej.12882
Zhou L, Wang Z, Wang Z, Zhu J, Feng Y, Zhang D, et al. Effect of heparinization on promoting angiogenesis of decellularized kidney scaffolds. J Biomed Mater Res A. 2021;109:1979–89.
doi: 10.1002/jbm.a.37190
Zhao L, Huang L, Yu S, Zheng J, Wang H, Zhang Y. Decellularized tongue tissue as an in vitro model for studying tongue cancer and tongue regeneration. Acta Biomater. 2017;58:122–35.
doi: 10.1016/j.actbio.2017.05.062
Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935.
McCrary MW, Bousalis D, Mobini S, Song YH, Schmidt CE. Decellularized tissues as platforms for in vitro modeling of healthy and diseased tissues. Acta Biomater. 2020;111:1–19.
Gao Z, Wu T, Xu J, Liu G, Xie Y, Zhang C, et al. Generation of bioartificial salivary gland using whole-organ decellularized bioscaffold. Cells Tissues Organs. 2014;200:171–80.
doi: 10.1159/000371873
Lee JS, Cho AN, Jin Y, Kim J, Kim S, Cho SW. Bio-artificial tongue with tongue extracellular matrix and primary taste cells. Biomaterials. 2018;151:24–37.
Yao Y, Lin W, Zhang Y. Fabrication of tongue extracellular matrix and reconstitution of tongue squamous cell carcinoma in vitro. J Vis Exp. 2018;136:57235.
Mahdavishahri N, Moghatam Matin M, Fereidoni M, Yarjanli Z, Banihashem Rad SA, Khajeh Ahmadi S. In vitro assay of human gingival scaffold in differentiation of rat’s bone marrow mesenchymal stem cells to keratinocystes. Iran J Basic Med Sci. 2012;15:1185–90.
Naderi S, Khayat Zadeh J, Mahdavi Shahri N, Nejad Shahrokh Abady K, Cheravi M, Baharara J, et al. Three-dimensional scaffold from decellularized human gingiva for cell cultures: glycoconjugates and cell behavior. Cell J. 2013;15:166–75.
pubmed: 23862119 pmcid: 3712778
Zhang X, Li H, Sun J, Luo X, Yang H, Xie L, et al. Cell-derived micro-environment helps dental pulp stem cells promote dental pulp regeneration. Cell Prolif. 2017;50:e12361.
doi: 10.1111/cpr.12361
Farag A, Vaquette C, Hutmacher DW, Bartold PM, Ivanovski S. Fabrication and characterization of decellularized periodontal ligament cell sheet constructs. Methods Mol Biol. 2017;1537:403–12.
Farag A, Vaquette C, Theodoropoulos C, Hamlet SM, Hutmacher DW, Ivanovski S. Decellularized periodontal ligament cell sheets with recellularization potential. J Dent Res. 2014;93:1313–9.
Farag A, Hashimi SM, Vaquette C, Bartold PM, Hutmacher D, Ivanovski S. The effect of decellularized tissue engineered constructs on periodontal regeneration. J Clin Periodontol. 2018;45:586–96.
Gong T, Heng BC, Xu J, Zhu S, Yuan C, Lo EC, et al. Decellularized extracellular matrix of human umbilical vein endothelial cells promotes endothelial differentiation of stem cells from exfoliated deciduous teeth. J Biomed Mater Res A. 2017;105:1083–93.
Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissue-specific decellularization methods: rationale and strategies to achieve regenerative compounds. Int J Mol Sci. 2020;21:5447.
doi: 10.3390/ijms21155447
Farag A, Hashimi SM, Vaquette C, Volpato FZ, Hutmacher DW, Ivanovski S. Assessment of static and perfusion methods for decellularization of PCL membrane-supported periodontal ligament cell sheet constructs. Arch Oral Biol. 2018;88:67–76.
de Sousa Iwamoto LA, Duailibi MT, Iwamoto GY, Juliano Y, Duailibi MS, Ossamu Tanaka FA, et al. Tooth tissue engineering: tooth decellularization for natural scaffold. Future Sci OA. 2016;2:FSO121.
Song JS, Takimoto K, Jeon M, Vadakekalam J, Ruparel NB, Diogenes A. Decellularized human dental pulp as a scaffold for regenerative endodontics. J Dent Res. 2017;96:640–6.
Bakhtiar H, Rajabi S, Pezeshki-Modaress M, Ellini M, Panahinia MR, Alijani S, et al. Optimizing methods for bovine dental pulp decellularization. J Endod. 2020;47:62–8.
Son H, Jeon M, Choi HJ, Lee HS, Kim IH, Kang CM, et al. Decellularized human periodontal ligament for periodontium regeneration. PLoS One. 2019;14:e0221236.
Naik A, Griffin MF, Szarko M, Butler PE. Optimizing the decellularization process of human maxillofacial muscles for facial reconstruction using a detergent-only approach. J Tissue Eng Regen Med. 2019;13:1571–80.
Hu L, Gao Z, Xu J, Zhu Z, Fan Z, Zhang C, et al. Decellularized swine dental pulp as a bioscaffold for pulp regeneration. Biomed Res Int. 2017;2017:9342714.
pubmed: 29387727 pmcid: 5745671
Li J, Rao Z, Zhao Y, Xu Y, Chen L, Shen Z, et al. A decellularized matrix hydrogel derived from human dental pulp promotes dental pulp stem cell proliferation, migration, and induced multidirectional differentiation in vitro. J Endod. 2020;46:1438-47.e5.
doi: 10.1016/j.joen.2020.07.008
Shin K, Koo KH, Jeong J, Park SJ, Choi DJ, Ko YG, et al. Three-dimensional culture of salivary gland stem cell in orthotropic decellularized extracellular matrix hydrogels. Tissue Eng Part A. 2019;25:1396–403.
doi: 10.1089/ten.tea.2018.0308
Paduano F, Marrelli M, White LJ, Shakesheff KM, Tatullo M. Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type I. PLoS One. 2016;11:e0148225.
Sangkert S, Meesane J, Kamonmattayakul S, Chai WL. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: morphological structures and biofunctionalities. Mater Sci Eng C Mater Biol Appl. 2016;58:1138–49.
Xu QL, Furuhashi A, Zhang QZ, Jiang CM, Chang TH, Le AD. Induction of salivary gland-like cells from dental follicle epithelial cells. J Dent Res. 2017;96:1035–43.
Heng BC, Zhu S, Xu J, Yuan C, Gong T, Zhang C. Effects of decellularized matrices derived from periodontal ligament stem cells and SHED on the adhesion, proliferation and osteogenic differentiation of human dental pulp stem cells in vitro. Tissue cell. 2016;48:133–43.
Xiong X, Yang X, Dai H, Feng G, Zhang Y, Zhou J, et al. Extracellular matrix derived from human urine-derived stem cells enhances the expansion, adhesion, spreading, and differentiation of human periodontal ligament stem cells. Stem Cell Res The. 2019;10:396.
Nakamura N, Ito A, Kimura T, Kishida A. Extracellular matrix induces periodontal ligament reconstruction in vivo. Int J Mol Sci. 2019;20:3277.
doi: 10.3390/ijms20133277
Wen Y, Yang H, Wu J, Wang A, Chen X, Hu S, et al. COL4A2 in the tissue-specific extracellular matrix plays important role on osteogenic differentiation of periodontal ligament stem cells. Theranostics. 2019;9:4265–86.
doi: 10.7150/thno.35914
Lee JS, Kim HS, Park SY, Kim TW, Jung JS, Lee JB, et al. Synergistic effects of a calcium phosphate/fibronectin coating on the adhesion of periodontal ligament stem cells onto decellularized dental root surfaces. Cell Transplant. 2015;24:1767–79.
Lee JS, Kim SK, Gruber R, Kim CS. Periodontal healing by periodontal ligament fiber with or without cells: a preclinical study of the decellularized periodontal ligament in a tooth replantation model. J Periodontol. 2020;91:110–9.
Nguyen MTN, Tran HLB. Effect of modified bovine pericardium on human gingival fibroblasts in vitro. Cells Tissues Organs. 2018;206:296–307.
Duisit J, Maistriaux L, Taddeo A, Orlando G, Joris V, Coche E, et al. Bioengineering a human face graft: the matrix of identity. Ann Surg. 2017;266:754–64.
doi: 10.1097/SLA.0000000000002396
Burghartz M, Lennartz S, Schweinlin M, Hagen R, Kleinsasser N, Hackenberg S, et al. Development of human salivary gland-like tissue in vitro. Tissue Eng Part A. 2018;24:301–9.
doi: 10.1089/ten.tea.2016.0466
Guo K, Wang W, Liu Z, Xu W, Zhang S, Yang C. Reliability of acellular decalcified and decalcified teeth as bone graft material: an experimental and pathological study in rats. Int J Clin Exp Pathol. 2020;13:837–45.
pubmed: 32509054 pmcid: 7270698
Ivanov AA, Latyshev AV, Butorina NN, Domoratskaya EI, Danilova TI, Popova OP. Osteogenic potential of decellularized tooth matrix. Bull Exp Biol Med. 2020;169:512–5.
Scarano A. Maxillary sinus augmentation with decellularized bovine compact particles: a radiological, clinical, and histologic report of 4 cases. Biomed Res Int. 2017;2017:2594670.
pubmed: 28349056 pmcid: 5352871
Kakabadze A, Mardaleishvili K, Loladze G, Karalashvili L, Chutkerashvili G, Chakhunashvili D, et al. Reconstruction of mandibular defects with autogenous bone and decellularized bovine bone grafts with freeze-dried bone marrow stem cell paracrine factors. Oncol Lett. 2017;13:1811–8.
doi: 10.3892/ol.2017.5647
Li W, Fu Y, Jiang B, Lo AY, Ameer GA, Barnett C, et al. Polymer-integrated amnion scaffold significantly improves cleft palate repair. Acta Biomater. 2019;92:104–14.
Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns. 1995;21:243–8.
doi: 10.1016/0305-4179(95)93866-I
McGuire MK, Scheyer ET, Nunn M. Evaluation of human recession defects treated with coronally advanced flaps and either enamel matrix derivative or connective tissue: comparison of clinical parameters at 10 years. J Periodontol. 2012;83:1353–62.
Yan-mei Z, Yue-qin S. Study of acellular allogeneic dermal matrix on periodontal surgery. Chin J Practical Stomatol. 2009;2:55–7.
de Resende DRB, Greghi SLA, Siqueira AF, Benfatti CAM, Damante CA, Ragghianti Zangrando MS. Acellular dermal matrix allograft versus free gingival graft: a histological evaluation and split-mouth randomized clinical trial. Clin Oral Investig. 2019;23:539–50.
Muthuraj TS, Bagchi S, Bandyopadhyay P, Mallick S, Ghosh P, Renganath MJ. A randomized split mouth clinical study to compare the clinical outcomes of subepithelial connective graft and acellular dermal matrix in Miller’s Class I recession coverage therapy. J Indian Soc Periodontol. 2020;24:342–7.
pubmed: 32831507 pmcid: 7418548
Taiyeb Ali TB, Shapeen IM, Ahmed HB, Javed F. Efficacy of acellular dermal matrix and autogenous connective tissue grafts in the treatment of gingival recession defects among Asians. J Investig Clin Dent. 2015;6:125–32.
Suzuki KT, de Jesus Hernandez Martinez C, Suemi MI, Palioto DB, Messora MR, de Souza SLS, et al. Root coverage using coronally advanced flap with porcine-derived acellular dermal matrix or subepithelial connective tissue graft: a randomized controlled clinical trial. Clin Oral Investig. 2020;24:4077–87.
Cortellini P, Pini Prato G. Coronally advanced flap and combination therapy for root coverage Clinical strategies based on scientific evidence and clinical experience. Periodontol 2000. 2012;59:158–84.
Moraschini V, Calasans-Maia MD, Dias AT, de Carvalho Formiga M, Sartoretto SC, Sculean A, et al. Effectiveness of connective tissue graft substitutes for the treatment of gingival recessions compared with coronally advanced flap: a network meta-analysis. Clin Oral Investig. 2020;24:3395–406.
Balderrama ÍF, Ferreira R, Rezende DRB, Nogueira ALRN, Greghi SLA, Zangrando MSR. Root coverage stability with acellular dermal matrix in multiple gingival recessions in esthetic zone: a clinical case report with 12-year follow-up. J Indian Soc Periodontol. 2019;23:584–8.
Barootchi S, Tavelli L, Gianfilippo RD, Eber R, Stefanini M, Zucchelli G, et al. Acellular dermal matrix for root coverage procedures: 9-year assessment of treated isolated gingival recessions and their adjacent untreated sites. J Periodontol. 2021;92:254–62.
Shi Y, Segelnick SL, El Chaar ES. A modified technique of tacking acellular dermal matrix to increase keratinized mucosa around dental implants as an alternative to a free gingival graft: a case report. Clin Adv Periodontics. 2020;10:175–80.
doi: 10.1002/cap.10113
Tavelli L, Barootchi S, Di Gianfilippo R, Modarressi M, Cairo F, Rasperini G, et al. Acellular dermal matrix and coronally advanced flap or tunnel technique in the treatment of multiple adjacent gingival recessions. A 12-year follow-up from a randomized clinical trial. J Clin Periodontol. 2019;46:937–48.
doi: 10.1111/jcpe.13163
Ye WM, Zhu HG, Zheng JW, Wang XD, Zhao W, Zhong LP, et al. Use of allogenic acellular dermal matrix in prevention of Frey’s syndrome after parotidectomy. Br J Oral Maxillofac Surg. 2008;46:649–52.
Al-Aroomi MA, Mashrah MA, Al-Aroomi OA, Al-Worafi NA, Al-Sharani HM, Sun C, et al. Acellular dermal matrix for prevention of Frey’s syndrome after superficial parotidectomy of benign tumors. Am J Otolaryngol. 2021;42:102893.
Choi J, Park SI, Rha EY, Seo BF, Kwon H, Jung SN. Acellular dermal matrix (Insuregraf) in the prevention of Frey’s syndrome and surgical site depression after parotidectomy. Arch Craniofac Surg. 2019;20:176–80.
Luo W, Zheng X, Chen L, Jing W, Tang W, Long J, et al. The use of human acellular dermal matrix in the prevention of infra-auricular depressed deformities and Frey’s syndrome following total parotidectomy. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114:e9-13.
doi: 10.1016/j.oooo.2011.08.012
Tse RW, Siebold B. Cleft palate repair: description of an approach, its evolution, and analysis of postoperative fistulas. Plast Reconstr Surg. 2018;141:1201–14.
Smyth AG, Wu J. Cleft palate outcomes and prognostic impact of palatal fistula on subsequent velopharyngeal function-A retrospective cohort study. Cleft Palate Craniofac J. 2019;56:1008–12.
Saralaya S, Desai AK, Kumar N. Difficulty index-based management of palatal fistula after primary cleft palate repair: an institutional experience. J Oral Maxillofac Surg. 2019;77:851.e1–7.
Kim JY, Kim SG, Park YW, Hwang DS, Paeng JY, Seok H. The effect of buccal fat pad graft in the palatoplasty and the risk factor of postoperative palatal fistula. J Craniofac Surg. 2020;31:658–61.
Aziz SR, Rhee ST, Ziccardi VB. Acellular dermal graft augmentation of primary palatoplasty: case report and review of the literature. J Oral Maxillofac Surg. 2011;69:1221–4.
doi: 10.1016/j.joms.2010.05.002
Yi CR, Jeon DN, Choi JW, Oh TS. Primary palatoplasty with intravelar veloplasty using acellular dermal matrix interpositional graft. J Craniofac Surg. 2021;32:252–6.
Calì Cassi L, Massei A. The use of acellular dermal matrix in the closure of oronasal fistulae after cleft palate repair. Plast Reconstr Surg Glob Open. 2015;3:e341.
doi: 10.1097/GOX.0000000000000301
Cole P, Horn TW, Thaller S. The use of decellularized dermal grafting (AlloDerm) in persistent oro-nasal fistulas after tertiary cleft palate repair. J Craniofac Surg. 2006;17:636–41.
Agir H, Eren GG, Yasar EK. Acellular dermal matrix use in cleft palate and palatal fistula repair: a potential benefit? J Craniofac Surg. 2015;26:1517–22.
Aldekhayel SA, Sinno H, Gilardino MS. Acellular dermal matrix in cleft palate repair: an evidence-based review. Plast Reconstr Surg. 2012;130:177–82.
Canellas JVDS, Fraga SRG, Santoro MF, Netto JNS, Tinoco EMB. Intrasocket interventions to prevent alveolar osteitis after mandibular third molar surgery: a systematic review and network meta-analysis. J Craniomaxillofac Surg. 2020;48:902–13.
Alsini AY, Sayed S, Alkaf HH, Abdelmonim SK, Alessa MA. Tongue reconstruction post partial glossectomy during the COVID-19 pandemic. A case report. Ann Med Surg (Lond). 2020;59:53–6.
Wang CW, Ashnagar S, Gianflippo RD, Arnett M, Kinney J, Wang HL. Laser-assisted regenerative surgical therapy for peri-implantitis: a randomized controlled clinical trial. J Periodontol. 2020;92:378–88.
Nica C, Lin Z, Sculean A, Asparuhova MB. Adsorption and release of growth factors from four different porcine-derived collagen matrices. Materials (Basel). 2013;13:2635.
Patel MH, Kim RY, Aronovich S, Skouteris CA. Clinical assessment of acellular dermal matrix (AlloDerm©) as an option in the replacement of the temporomandibular joint disc: a pilot study. J Stomatol Oral Maxillofac Surg. 2020;121:496–500.
doi: 10.1016/j.jormas.2019.12.018
Wang C, Wu D, Mao C, Lu M, Cai Z, Lai Y, et al. The preventive effect of decellularized pericardial patch against Frey’s syndrome following the superficial parotidectomy. J Craniomaxillofac Surg. 2019;47:832–6.
doi: 10.1016/j.jcms.2019.01.022
Shanti RM, Ziccardi VB. Use of decellularized nerve allograft for inferior alveolar nerve reconstruction: a case report. J Oral Maxillofac Surg. 2011;69:550–3.

Auteurs

Ailin Zeng (A)

School of Stomatology, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, 563006, Guizhou, China.

Huiru Li (H)

School of Stomatology, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, 563006, Guizhou, China.

Jianguo Liu (J)

School of Stomatology, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, 563006, Guizhou, China. 13087891001@163.com.
Special Key Laboratory of Oral Disease Research of Higher Education Institution of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China. 13087891001@163.com.

Mingsong Wu (M)

School of Stomatology, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, 563006, Guizhou, China. mswu0909@zmu.edu.cn.
Special Key Laboratory of Oral Disease Research of Higher Education Institution of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China. mswu0909@zmu.edu.cn.

Articles similaires

Animals Osteogenesis Osteoporosis Mesenchymal Stem Cells Humans
Humans Retinal Pigment Epithelium Retinal Degeneration Animals Tissue Scaffolds
Wnt-5a Protein Animals Cell Differentiation Odontogenesis Humans

Personalized bioceramic grafts for craniomaxillofacial bone regeneration.

Ana Beatriz G de Carvalho, Maedeh Rahimnejad, Rodrigo L M S Oliveira et al.
1.00
Humans Bone Regeneration Ceramics Printing, Three-Dimensional Tissue Scaffolds

Classifications MeSH