RNA sequencing analysis of hepatocellular carcinoma identified oxidative phosphorylation as a major pathologic feature.
Journal
Hepatology communications
ISSN: 2471-254X
Titre abrégé: Hepatol Commun
Pays: United States
ID NLM: 101695860
Informations de publication
Date de publication:
08 2022
08 2022
Historique:
revised:
12
02
2022
received:
01
11
2021
accepted:
03
03
2022
pubmed:
29
3
2022
medline:
28
7
2022
entrez:
28
3
2022
Statut:
ppublish
Résumé
Dysregulation of expression of functional genes and pathways plays critical roles in the etiology and progression of hepatocellular carcinoma (HCC). Next generation-based RNA sequencing (RNA-seq) offers unparalleled power to comprehensively characterize HCC at the whole transcriptome level. In this study, 17 fresh-frozen HCC samples with paired non-neoplastic liver tissue from Caucasian patients undergoing liver resection or transplantation were used for RNA-seq analysis. Pairwise differential expression analysis of the RNA-seq data was performed to identify genes, pathways, and functional terms differentially regulated in HCC versus normal tissues. At a false discovery rate (FDR) of 0.10, 13% (n = 4335) of transcripts were up-regulated and 19% (n = 6454) of transcripts were down-regulated in HCC versus non-neoplastic tissue. Eighty-five Kyoto Encyclopedia of Genes and Genomes pathways were differentially regulated (FDR, <0.10), with almost all pathways (n = 83) being up-regulated in HCC versus non-neoplastic tissue. Among the top up-regulated pathways was oxidative phosphorylation (hsa00190; FDR, 1.12E-15), which was confirmed by Database for Annotation, Visualization, and Integrated Discovery (DAVID) gene set enrichment analysis. Consistent with potential oxidative stress due to activated oxidative phosphorylation, DNA damage-related signals (e.g., the up-regulated hsa03420 nucleotide excision repair [FDR, 1.14E-04] and hsa03410 base excision repair [FDR, 2.71E-04] pathways) were observed. Among down-regulated genes (FDR, <0.10), functional terms related to cellular structures (e.g., cell membrane [FDR, 3.05E-21] and cell junction [FDR, 2.41E-07], were highly enriched, suggesting compromised formation of cellular structure in HCC at the transcriptome level. Interestingly, the olfactory transduction (hsa04740; FDR, 1.53E-07) pathway was observed to be down-regulated in HCC versus non-neoplastic tissue, suggesting impaired liver chemosensory functions in HCC. Our findings suggest oxidative phosphorylation and the associated DNA damage may be the major driving pathologic feature in HCC.
Identifiants
pubmed: 35344307
doi: 10.1002/hep4.1945
pmc: PMC9315135
pii: 02009842-202208000-00027
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2170-2181Informations de copyright
© 2022 The Authors. Hepatology Communications published by Wiley Periodicals LLC on behalf of American Association for the Study of Liver Diseases.
Références
Nature. 2014 Oct 30;514(7524):628-32
pubmed: 25119024
Trends Cancer. 2017 Nov;3(11):768-779
pubmed: 29120753
Hepatology. 2021 Jan;73 Suppl 1:4-13
pubmed: 32319693
Bioinformatics. 2013 Jul 15;29(14):1830-1
pubmed: 23740750
Nucleic Acids Res. 2009 Jan;37(1):1-13
pubmed: 19033363
Gut. 2019 Nov;68(11):2019-2031
pubmed: 31227589
N Engl J Med. 2011 Sep 22;365(12):1118-27
pubmed: 21992124
Semin Oncol. 2012 Aug;39(4):473-85
pubmed: 22846864
Nat Methods. 2017 Apr;14(4):417-419
pubmed: 28263959
Nat Protoc. 2009;4(1):44-57
pubmed: 19131956
Cell Cycle. 2011 Dec 1;10(23):4047-64
pubmed: 22134189
J Clin Invest. 2016 Oct 3;126(10):3739-3757
pubmed: 27571409
PLoS One. 2011;6(10):e26168
pubmed: 22043308
J Surg Res. 2019 Feb;234:343-352
pubmed: 30527495
J Hepatol. 2017 Oct;67(4):727-738
pubmed: 28532995
Int J Cancer. 2016 May 1;138(9):2231-46
pubmed: 26595876
Genome Biol. 2014;15(12):550
pubmed: 25516281
Front Physiol. 2020 Oct 06;11:574082
pubmed: 33123030
Nat Rev Cancer. 2006 Sep;6(9):674-87
pubmed: 16929323
Int J Mol Sci. 2020 Jul 25;21(15):
pubmed: 32722385
J Hepatol. 2019 Sep;71(3):616-630
pubmed: 31195064
Hepatol Commun. 2022 Aug;6(8):2170-2181
pubmed: 35344307
Am J Transplant. 2021 Feb;21 Suppl 2:208-315
pubmed: 33595192
Nat Methods. 2015 May;12(5):453-7
pubmed: 25822800
Cell. 2019 Oct 31;179(4):829-845.e20
pubmed: 31675496
Cell. 2017 Jun 15;169(7):1327-1341.e23
pubmed: 28622513
Cell Commun Signal. 2018 Feb 05;16(1):6
pubmed: 29402287
Int J Biochem Cell Biol. 2015 Jul;64:75-80
pubmed: 25817041
EBioMedicine. 2019 Feb;40:457-470
pubmed: 30598371
Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Apr;1864(4):489-499
pubmed: 30639733
BMC Bioinformatics. 2009 May 27;10:161
pubmed: 19473525
Gastroenterology. 2015 Oct;149(5):1226-1239.e4
pubmed: 26099527
Oncotarget. 2017 May 30;8(22):35973-35983
pubmed: 28415592
F1000Res. 2015 Dec 30;4:1521
pubmed: 26925227
Curr Genomics. 2010 Jun;11(4):261-8
pubmed: 21119890
Nat Genet. 2002 Aug;31(4):339-46
pubmed: 12149612
Int J Mol Sci. 2018 Mar 23;19(4):
pubmed: 29570697
Mol Carcinog. 2011 Apr;50(4):235-43
pubmed: 21465573
Hepatology. 2015 Jan;61(1):191-9
pubmed: 25142309
Oncotarget. 2016 Jun 21;7(25):38487-38499
pubmed: 27220887
J Clin Invest. 2017 Nov 1;127(11):4118-4123
pubmed: 28990936
Hepatology. 2005 Oct;42(4):809-18
pubmed: 16175600
Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15089-94
pubmed: 11752456
Cancer Res. 2002 Jul 15;62(14):3939-44
pubmed: 12124323
Gastroenterology. 2004 Nov;127(5 Suppl 1):S5-S16
pubmed: 15508102
NPJ Precis Oncol. 2018 Nov 15;2:25
pubmed: 30456308