Co-transcriptional splicing efficiency is a gene-specific feature that can be regulated by TGFβ.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
28 03 2022
Historique:
received: 02 08 2021
accepted: 03 03 2022
entrez: 29 3 2022
pubmed: 30 3 2022
medline: 19 4 2022
Statut: epublish

Résumé

Differential splicing efficiency of specific introns is a mechanism that dramatically increases protein diversity, based on selection of alternative exons for the final mature mRNA. However, it is unclear whether splicing efficiency of introns within the same gene is coordinated and eventually regulated as a mechanism to control mature mRNA levels. Based on nascent chromatin-associated RNA-sequencing data, we now find that co-transcriptional splicing (CTS) efficiency tends to be similar between the different introns of a gene. We establish that two well-differentiated strategies for CTS efficiency exist, at the extremes of a gradient: short genes that produce high levels of pre-mRNA undergo inefficient splicing, while long genes with relatively low levels of pre-mRNA have an efficient splicing. Notably, we observe that genes with efficient CTS display a higher level of mature mRNA relative to their pre-mRNA levels. Further, we show that the TGFβ signal transduction pathway regulates the general CTS efficiency, causing changes in mature mRNA levels. Taken together, our data indicate that CTS efficiency is a gene-specific characteristic that can be regulated to control gene expression.

Identifiants

pubmed: 35347226
doi: 10.1038/s42003-022-03224-z
pii: 10.1038/s42003-022-03224-z
pmc: PMC8960766
doi:

Substances chimiques

RNA Precursors 0
RNA, Messenger 0
Transforming Growth Factor beta 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

277

Subventions

Organisme : Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
ID : PID2020-118516GB-I00
Organisme : Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
ID : BFU2017-85420-R
Organisme : Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
ID : P18-FR-1962

Informations de copyright

© 2022. The Author(s).

Références

Moore, M. J. & Proudfoot, N. J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009).
pubmed: 19239889 doi: 10.1016/j.cell.2009.02.001
Carrocci, T. J. & Neugebauer, K. M. Pre-mRNA Splicing in the Nuclear Landscape. Cold Spring Harb. Symp. Quant. Biol. 84, 11–20 (2019).
pubmed: 32493763 doi: 10.1101/sqb.2019.84.040402
Wilkinson, M. E., Charenton, C. & Nagai, K. RNA splicing by the spliceosome. Annu. Rev. Biochem. 89, 359–388 (2020).
pubmed: 31794245 doi: 10.1146/annurev-biochem-091719-064225
Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).
pubmed: 18978772 pmcid: 2593745 doi: 10.1038/nature07509
Naftelberg, S., Schor, I. E., Ast, G. & Kornblihtt, A. R. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu. Rev. Biochem. 84, 165–198 (2015).
pubmed: 26034889 doi: 10.1146/annurev-biochem-060614-034242
Ellis, J. D. et al. Tissue-specific alternative splicing remodels protein-protein interaction networks. Mol. Cell 46, 884–892 (2012).
pubmed: 22749401 doi: 10.1016/j.molcel.2012.05.037
Rong, S. et al. Mutational bias and the protein code shape the evolution of splicing enhancers. Nat. Commun. 11, 2845 (2020).
pubmed: 32504065 pmcid: 7275064 doi: 10.1038/s41467-020-16673-z
Lin, C. L., Taggart, A. J. & Fairbrother, W. G. RNA structure in splicing: an evolutionary perspective. RNA Biol. 13, 766–771 (2016).
pubmed: 27454491 pmcid: 5014005 doi: 10.1080/15476286.2016.1208893
Saldi, T., Riemondy, K., Erickson, B. & Bentley, D. L. Alternative RNA structures formed during transcription depend on elongation rate and modify RNA processing. Mol. Cell 81, 1789–1801 e1785 (2021).
pubmed: 33631106 pmcid: 8052309 doi: 10.1016/j.molcel.2021.01.040
Herzel, L., Ottoz, D. S. M., Alpert, T. & Neugebauer, K. M. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat. Rev. Mol. Cell Biol. 18, 637–650 (2017).
pubmed: 28792005 pmcid: 5928008 doi: 10.1038/nrm.2017.63
Ameur, A. et al. Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. Nat. Struct. Mol. Biol. 18, 1435–1440 (2011).
pubmed: 22056773 doi: 10.1038/nsmb.2143
Wuarin, J. & Schibler, U. Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. Mol. Cell Biol. 14, 7219–7225 (1994).
pubmed: 7523861 pmcid: 359256
Osheim, Y. N., Miller, O. L. Jr & Beyer, A. L. RNP particles at splice junction sequences on Drosophila chorion transcripts. Cell 43, 143–151 (1985).
pubmed: 3935315 doi: 10.1016/0092-8674(85)90019-4
Perales, R. & Bentley, D. “Cotranscriptionality”: the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 36, 178–191 (2009).
pubmed: 19854129 pmcid: 2770090 doi: 10.1016/j.molcel.2009.09.018
Singh, J. & Padgett, R. A. Rates of in situ transcription and splicing in large human genes. Nat. Struct. Mol. Biol. 16, 1128–1133 (2009).
pubmed: 19820712 pmcid: 2783620 doi: 10.1038/nsmb.1666
Carrillo Oesterreich, F., Preibisch, S. & Neugebauer, K. M. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol. Cell 40, 571–581 (2010).
pubmed: 21095587 doi: 10.1016/j.molcel.2010.11.004
Khodor, Y. L. et al. Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Genes Dev. 25, 2502–2512 (2011).
pubmed: 22156210 pmcid: 3243060 doi: 10.1101/gad.178962.111
Khodor, Y. L., Menet, J. S., Tolan, M. & Rosbash, M. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse. RNA 18, 2174–2186 (2012).
Tilgner, H. et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 22, 1616–1625 (2012).
pubmed: 22955974 pmcid: 3431479 doi: 10.1101/gr.134445.111
Oesterreich, F. C. et al. Splicing of nascent RNA coincides with intron exit from RNA polymerase II. Cell 165, 372–381 (2016).
pubmed: 27020755 pmcid: 4826323 doi: 10.1016/j.cell.2016.02.045
Reimer, K. A., Mimoso, C. A., Adelman, K. & Neugebauer, K. M. Co-transcriptional splicing regulates 3’ end cleavage during mammalian erythropoiesis. Mol Cell 81, 998–1012.e7 (2021).
Drexler, H. L., Choquet, K. & Churchman, L. S. Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol. Cell 77, 985–998 e988 (2020).
pubmed: 31839405 doi: 10.1016/j.molcel.2019.11.017
Sousa-Luis, R. et al. POINT technology illuminates the processing of polymerase-associated intact nascent transcripts. Mol. Cell 81, 1935–1950 e1936 (2021).
pubmed: 33735606 pmcid: 8122139 doi: 10.1016/j.molcel.2021.02.034
Howe, K. J., Kane, C. M. & Ares, M. Jr. Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA 9, 993–1006 (2003).
Aslanzadeh, V., Huang, Y., Sanguinetti, G. & Beggs, J. D. Transcription rate strongly affects splicing fidelity and cotranscriptionality in budding yeast. Genome Res. 28, 203–213 (2018).
pubmed: 29254943 pmcid: 5793784 doi: 10.1101/gr.225615.117
de la Mata, M. et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12, 525–532 (2003).
pubmed: 14536091 doi: 10.1016/j.molcel.2003.08.001
Fong, N. et al. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. Genes Dev. 28, 2663–2676 (2014).
pubmed: 25452276 pmcid: 4248296 doi: 10.1101/gad.252106.114
Jimeno-Gonzalez, S. et al. Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing. Proc. Natl Acad. Sci. USA 112, 14840–14845 (2015).
pubmed: 26578803 pmcid: 4672771 doi: 10.1073/pnas.1506760112
David, C. J. & Massague, J. Contextual determinants of TGFbeta action in development, immunity and cancer. Nat. Rev. Mol. Cell Biol. 19, 419–435 (2018).
pubmed: 29643418 pmcid: 7457231 doi: 10.1038/s41580-018-0007-0
Hill, C. S. Transcriptional control by the SMADs. Cold Spring Harb. Perspect. Biol. 8, a022079 (2016).
Guerrero-Martinez, J. A., Ceballos-Chavez, M., Koehler, F., Peiro, S. & Reyes, J. C. TGFbeta promotes widespread enhancer chromatin opening and operates on genomic regulatory domains. Nat. Commun. 11, 6196 (2020).
pubmed: 33273453 pmcid: 7713251 doi: 10.1038/s41467-020-19877-5
Miettinen, P. J., Ebner, R., Lopez, A. R. & Derynck, R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol. 127, 2021–2036 (1994).
pubmed: 7806579 doi: 10.1083/jcb.127.6.2021
Dye, M. J., Gromak, N. & Proudfoot, N. J. Exon tethering in transcription by RNA polymerase II. Mol. Cell 21, 849–859 (2006).
pubmed: 16543153 doi: 10.1016/j.molcel.2006.01.032
Bhatt, D. M. et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150, 279–290 (2012).
pubmed: 22817891 pmcid: 3405548 doi: 10.1016/j.cell.2012.05.043
Niwa, M. & Berget, S. M. Mutation of the AAUAAA polyadenylation signal depresses in vitro splicing of proximal but not distal introns. Genes Dev. 5, 2086–2095 (1991).
pubmed: 1657710 doi: 10.1101/gad.5.11.2086
Lewis, J. D., Izaurralde, E., Jarmolowski, A., McGuigan, C. & Mattaj, I. W. A nuclear cap-binding complex facilitates association of U1 snRNP with the cap-proximal 5’ splice site. Genes Dev. 10, 1683–1698 (1996).
pubmed: 8682298 doi: 10.1101/gad.10.13.1683
Cooke, C., Hans, H. & Alwine, J. C. Utilization of splicing elements and polyadenylation signal elements in the coupling of polyadenylation and last-intron removal. Mol. Cell Biol. 19, 4971–4979 (1999).
pubmed: 10373547 pmcid: 84315 doi: 10.1128/MCB.19.7.4971
Dye, M. J. & Proudfoot, N. J. Terminal exon definition occurs cotranscriptionally and promotes termination of RNA polymerase II. Mol. Cell 3, 371–378 (1999).
pubmed: 10198639 doi: 10.1016/S1097-2765(00)80464-5
Munding, E. M., Shiue, L., Katzman, S., Donohue, J. P. & Ares, M. Jr. Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing. Mol. Cell 51, 338–348 (2013).
pubmed: 23891561 pmcid: 3771316 doi: 10.1016/j.molcel.2013.06.012
Yeo, G. & Burge, C. B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 11, 377–394 (2004).
pubmed: 15285897 doi: 10.1089/1066527041410418
Amit, M. et al. Differential GC content between exons and introns establishes distinct strategies of splice-site recognition. Cell Rep. 1, 543–556 (2012).
pubmed: 22832277 doi: 10.1016/j.celrep.2012.03.013
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Wachutka, L., Caizzi, L., Gagneur, J. & Cramer, P. Global donor and acceptor splicing site kinetics in human cells. eLife 8 e45056 (2019).
Windhager, L. et al. Ultrashort and progressive 4sU-tagging reveals key characteristics of RNA processing at nucleotide resolution. Genome Res. 22, 2031–2042 (2012).
pubmed: 22539649 pmcid: 3460197 doi: 10.1101/gr.131847.111
Pai, A. A. et al. The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture. eLife 6, e32537 (2017).
Aebi, M. & Weissmann, C. Precision and orderliness in splicing. Trends Genet. 3, 102–107 (1987).
doi: 10.1016/0168-9525(87)90193-4
Li, S. et al. Global co-transcriptional splicing in arabidopsis and the correlation with splicing regulation in mature RNAs. Mol. Plant 13, 266–277 (2020).
pubmed: 31759129 doi: 10.1016/j.molp.2019.11.003
Zhu, D. et al. The features and regulation of co-transcriptional splicing in Arabidopsis. Mol. Plant 13, 278–294 (2020).
pubmed: 31760161 doi: 10.1016/j.molp.2019.11.004
Veloso, A. et al. Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications. Genome Res. 24, 896–905 (2014).
pubmed: 24714810 pmcid: 4032854 doi: 10.1101/gr.171405.113
Rabani, M. et al. High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies. Cell 159, 1698–1710 (2014).
pubmed: 25497548 pmcid: 4272607 doi: 10.1016/j.cell.2014.11.015
Ding, F. & Elowitz, M. B. Constitutive splicing and economies of scale in gene expression. Nat. Struct. Mol. Biol. 26, 424–432 (2019).
pubmed: 31133700 pmcid: 6663491 doi: 10.1038/s41594-019-0226-x
Yoshihama, M. et al. The human ribosomal protein genes: sequencing and comparative analysis of 73 genes. Genome Res. 12, 379–390 (2002).
pubmed: 11875025 pmcid: 155282 doi: 10.1101/gr.214202
Heyn, P., Kalinka, A. T., Tomancak, P. & Neugebauer, K. M. Introns and gene expression: cellular constraints, transcriptional regulation, and evolutionary consequences. Bioessays 37, 148–154 (2015).
pubmed: 25400101 doi: 10.1002/bies.201400138
Tullai, J. W. et al. Immediate-early and delayed primary response genes are distinct in function and genomic architecture. J. Biol. Chem. 282, 23981–23995 (2007).
pubmed: 17575275 doi: 10.1074/jbc.M702044200
Gelfman, S. et al. Changes in exon-intron structure during vertebrate evolution affect the splicing pattern of exons. Genome Res. 22, 35–50 (2012).
pubmed: 21974994 pmcid: 3246205 doi: 10.1101/gr.119834.110
Jonkers, I., Kwak, H. & Lis, J. T. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife 3, e02407 (2014).
pubmed: 24843027 pmcid: 4001325 doi: 10.7554/eLife.02407
Chen, F. X., Smith, E. R. & Shilatifard, A. Born to run: control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 19, 464–478 (2018).
pubmed: 29740129 doi: 10.1038/s41580-018-0010-5
Dowhan, D. H. et al. Steroid hormone receptor coactivation and alternative RNA splicing by U2AF65-related proteins CAPERalpha and CAPERbeta. Mol. Cell 17, 429–439 (2005).
pubmed: 15694343 doi: 10.1016/j.molcel.2004.12.025
Auboeuf, D., Honig, A., Berget, S. M. & O’Malley, B. W. Coordinate regulation of transcription and splicing by steroid receptor coregulators. Science 298, 416–419 (2002).
pubmed: 12376702 doi: 10.1126/science.1073734
Gordon, J. M., Phizicky, D. V. & Neugebauer, K. M. Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision. Curr. Opin. Genet. Dev. 67, 67–76 (2020).
pubmed: 33291060 pmcid: 8084925 doi: 10.1016/j.gde.2020.11.002
Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, e47 (2019).
pubmed: 30783653 pmcid: 6486549 doi: 10.1093/nar/gkz114
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168 pmcid: 2705234 doi: 10.1093/bioinformatics/btp324
Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).
pubmed: 22517427 doi: 10.1093/bib/bbs017
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
pubmed: 25690850 pmcid: 4643835 doi: 10.1038/nbt.3122
Pertea, G. & Pertea, M. GFF utilities: GffRead and GffCompare. F1000Res 9, ISCB Comm J-304 (2020).
Law, C. W. et al. RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Res 5, ISCB Comm J-1408 (2016).
Eng, L. et al. Nonclassical splicing mutations in the coding and noncoding regions of the ATM Gene: maximum entropy estimates of splice junction strengths. Hum. Mutat. 23, 67–76 (2004).
pubmed: 14695534 doi: 10.1002/humu.10295
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Conrad, T. & Orom, U. A. Cellular fractionation and isolation of chromatin-associated RNA. Methods Mol. Biol. 1468, 1–9 (2017).
pubmed: 27662865 doi: 10.1007/978-1-4939-4035-6_1

Auteurs

Elena Sánchez-Escabias (E)

Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Avenida Americo Vespucio, 41092, Seville, Spain.

José A Guerrero-Martínez (JA)

Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Avenida Americo Vespucio, 41092, Seville, Spain. jose.guerrero@cabimer.es.

José C Reyes (JC)

Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Avenida Americo Vespucio, 41092, Seville, Spain. jose.reyes@cabimer.es.

Articles similaires

Humans Endoribonucleases RNA, Messenger RNA Caps Gene Expression Regulation
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Spliceosomes Humans Transcriptome Alternative Splicing RNA Splice Sites
Humans Female Ovarian Neoplasms Cell Proliferation RNA, Long Noncoding

Classifications MeSH