Co-transcriptional splicing efficiency is a gene-specific feature that can be regulated by TGFβ.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
28 03 2022
28 03 2022
Historique:
received:
02
08
2021
accepted:
03
03
2022
entrez:
29
3
2022
pubmed:
30
3
2022
medline:
19
4
2022
Statut:
epublish
Résumé
Differential splicing efficiency of specific introns is a mechanism that dramatically increases protein diversity, based on selection of alternative exons for the final mature mRNA. However, it is unclear whether splicing efficiency of introns within the same gene is coordinated and eventually regulated as a mechanism to control mature mRNA levels. Based on nascent chromatin-associated RNA-sequencing data, we now find that co-transcriptional splicing (CTS) efficiency tends to be similar between the different introns of a gene. We establish that two well-differentiated strategies for CTS efficiency exist, at the extremes of a gradient: short genes that produce high levels of pre-mRNA undergo inefficient splicing, while long genes with relatively low levels of pre-mRNA have an efficient splicing. Notably, we observe that genes with efficient CTS display a higher level of mature mRNA relative to their pre-mRNA levels. Further, we show that the TGFβ signal transduction pathway regulates the general CTS efficiency, causing changes in mature mRNA levels. Taken together, our data indicate that CTS efficiency is a gene-specific characteristic that can be regulated to control gene expression.
Identifiants
pubmed: 35347226
doi: 10.1038/s42003-022-03224-z
pii: 10.1038/s42003-022-03224-z
pmc: PMC8960766
doi:
Substances chimiques
RNA Precursors
0
RNA, Messenger
0
Transforming Growth Factor beta
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
277Subventions
Organisme : Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
ID : PID2020-118516GB-I00
Organisme : Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
ID : BFU2017-85420-R
Organisme : Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
ID : P18-FR-1962
Informations de copyright
© 2022. The Author(s).
Références
Moore, M. J. & Proudfoot, N. J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009).
pubmed: 19239889
doi: 10.1016/j.cell.2009.02.001
Carrocci, T. J. & Neugebauer, K. M. Pre-mRNA Splicing in the Nuclear Landscape. Cold Spring Harb. Symp. Quant. Biol. 84, 11–20 (2019).
pubmed: 32493763
doi: 10.1101/sqb.2019.84.040402
Wilkinson, M. E., Charenton, C. & Nagai, K. RNA splicing by the spliceosome. Annu. Rev. Biochem. 89, 359–388 (2020).
pubmed: 31794245
doi: 10.1146/annurev-biochem-091719-064225
Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).
pubmed: 18978772
pmcid: 2593745
doi: 10.1038/nature07509
Naftelberg, S., Schor, I. E., Ast, G. & Kornblihtt, A. R. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu. Rev. Biochem. 84, 165–198 (2015).
pubmed: 26034889
doi: 10.1146/annurev-biochem-060614-034242
Ellis, J. D. et al. Tissue-specific alternative splicing remodels protein-protein interaction networks. Mol. Cell 46, 884–892 (2012).
pubmed: 22749401
doi: 10.1016/j.molcel.2012.05.037
Rong, S. et al. Mutational bias and the protein code shape the evolution of splicing enhancers. Nat. Commun. 11, 2845 (2020).
pubmed: 32504065
pmcid: 7275064
doi: 10.1038/s41467-020-16673-z
Lin, C. L., Taggart, A. J. & Fairbrother, W. G. RNA structure in splicing: an evolutionary perspective. RNA Biol. 13, 766–771 (2016).
pubmed: 27454491
pmcid: 5014005
doi: 10.1080/15476286.2016.1208893
Saldi, T., Riemondy, K., Erickson, B. & Bentley, D. L. Alternative RNA structures formed during transcription depend on elongation rate and modify RNA processing. Mol. Cell 81, 1789–1801 e1785 (2021).
pubmed: 33631106
pmcid: 8052309
doi: 10.1016/j.molcel.2021.01.040
Herzel, L., Ottoz, D. S. M., Alpert, T. & Neugebauer, K. M. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat. Rev. Mol. Cell Biol. 18, 637–650 (2017).
pubmed: 28792005
pmcid: 5928008
doi: 10.1038/nrm.2017.63
Ameur, A. et al. Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. Nat. Struct. Mol. Biol. 18, 1435–1440 (2011).
pubmed: 22056773
doi: 10.1038/nsmb.2143
Wuarin, J. & Schibler, U. Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. Mol. Cell Biol. 14, 7219–7225 (1994).
pubmed: 7523861
pmcid: 359256
Osheim, Y. N., Miller, O. L. Jr & Beyer, A. L. RNP particles at splice junction sequences on Drosophila chorion transcripts. Cell 43, 143–151 (1985).
pubmed: 3935315
doi: 10.1016/0092-8674(85)90019-4
Perales, R. & Bentley, D. “Cotranscriptionality”: the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 36, 178–191 (2009).
pubmed: 19854129
pmcid: 2770090
doi: 10.1016/j.molcel.2009.09.018
Singh, J. & Padgett, R. A. Rates of in situ transcription and splicing in large human genes. Nat. Struct. Mol. Biol. 16, 1128–1133 (2009).
pubmed: 19820712
pmcid: 2783620
doi: 10.1038/nsmb.1666
Carrillo Oesterreich, F., Preibisch, S. & Neugebauer, K. M. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol. Cell 40, 571–581 (2010).
pubmed: 21095587
doi: 10.1016/j.molcel.2010.11.004
Khodor, Y. L. et al. Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Genes Dev. 25, 2502–2512 (2011).
pubmed: 22156210
pmcid: 3243060
doi: 10.1101/gad.178962.111
Khodor, Y. L., Menet, J. S., Tolan, M. & Rosbash, M. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse. RNA 18, 2174–2186 (2012).
Tilgner, H. et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 22, 1616–1625 (2012).
pubmed: 22955974
pmcid: 3431479
doi: 10.1101/gr.134445.111
Oesterreich, F. C. et al. Splicing of nascent RNA coincides with intron exit from RNA polymerase II. Cell 165, 372–381 (2016).
pubmed: 27020755
pmcid: 4826323
doi: 10.1016/j.cell.2016.02.045
Reimer, K. A., Mimoso, C. A., Adelman, K. & Neugebauer, K. M. Co-transcriptional splicing regulates 3’ end cleavage during mammalian erythropoiesis. Mol Cell 81, 998–1012.e7 (2021).
Drexler, H. L., Choquet, K. & Churchman, L. S. Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol. Cell 77, 985–998 e988 (2020).
pubmed: 31839405
doi: 10.1016/j.molcel.2019.11.017
Sousa-Luis, R. et al. POINT technology illuminates the processing of polymerase-associated intact nascent transcripts. Mol. Cell 81, 1935–1950 e1936 (2021).
pubmed: 33735606
pmcid: 8122139
doi: 10.1016/j.molcel.2021.02.034
Howe, K. J., Kane, C. M. & Ares, M. Jr. Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA 9, 993–1006 (2003).
Aslanzadeh, V., Huang, Y., Sanguinetti, G. & Beggs, J. D. Transcription rate strongly affects splicing fidelity and cotranscriptionality in budding yeast. Genome Res. 28, 203–213 (2018).
pubmed: 29254943
pmcid: 5793784
doi: 10.1101/gr.225615.117
de la Mata, M. et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12, 525–532 (2003).
pubmed: 14536091
doi: 10.1016/j.molcel.2003.08.001
Fong, N. et al. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. Genes Dev. 28, 2663–2676 (2014).
pubmed: 25452276
pmcid: 4248296
doi: 10.1101/gad.252106.114
Jimeno-Gonzalez, S. et al. Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing. Proc. Natl Acad. Sci. USA 112, 14840–14845 (2015).
pubmed: 26578803
pmcid: 4672771
doi: 10.1073/pnas.1506760112
David, C. J. & Massague, J. Contextual determinants of TGFbeta action in development, immunity and cancer. Nat. Rev. Mol. Cell Biol. 19, 419–435 (2018).
pubmed: 29643418
pmcid: 7457231
doi: 10.1038/s41580-018-0007-0
Hill, C. S. Transcriptional control by the SMADs. Cold Spring Harb. Perspect. Biol. 8, a022079 (2016).
Guerrero-Martinez, J. A., Ceballos-Chavez, M., Koehler, F., Peiro, S. & Reyes, J. C. TGFbeta promotes widespread enhancer chromatin opening and operates on genomic regulatory domains. Nat. Commun. 11, 6196 (2020).
pubmed: 33273453
pmcid: 7713251
doi: 10.1038/s41467-020-19877-5
Miettinen, P. J., Ebner, R., Lopez, A. R. & Derynck, R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol. 127, 2021–2036 (1994).
pubmed: 7806579
doi: 10.1083/jcb.127.6.2021
Dye, M. J., Gromak, N. & Proudfoot, N. J. Exon tethering in transcription by RNA polymerase II. Mol. Cell 21, 849–859 (2006).
pubmed: 16543153
doi: 10.1016/j.molcel.2006.01.032
Bhatt, D. M. et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150, 279–290 (2012).
pubmed: 22817891
pmcid: 3405548
doi: 10.1016/j.cell.2012.05.043
Niwa, M. & Berget, S. M. Mutation of the AAUAAA polyadenylation signal depresses in vitro splicing of proximal but not distal introns. Genes Dev. 5, 2086–2095 (1991).
pubmed: 1657710
doi: 10.1101/gad.5.11.2086
Lewis, J. D., Izaurralde, E., Jarmolowski, A., McGuigan, C. & Mattaj, I. W. A nuclear cap-binding complex facilitates association of U1 snRNP with the cap-proximal 5’ splice site. Genes Dev. 10, 1683–1698 (1996).
pubmed: 8682298
doi: 10.1101/gad.10.13.1683
Cooke, C., Hans, H. & Alwine, J. C. Utilization of splicing elements and polyadenylation signal elements in the coupling of polyadenylation and last-intron removal. Mol. Cell Biol. 19, 4971–4979 (1999).
pubmed: 10373547
pmcid: 84315
doi: 10.1128/MCB.19.7.4971
Dye, M. J. & Proudfoot, N. J. Terminal exon definition occurs cotranscriptionally and promotes termination of RNA polymerase II. Mol. Cell 3, 371–378 (1999).
pubmed: 10198639
doi: 10.1016/S1097-2765(00)80464-5
Munding, E. M., Shiue, L., Katzman, S., Donohue, J. P. & Ares, M. Jr. Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing. Mol. Cell 51, 338–348 (2013).
pubmed: 23891561
pmcid: 3771316
doi: 10.1016/j.molcel.2013.06.012
Yeo, G. & Burge, C. B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 11, 377–394 (2004).
pubmed: 15285897
doi: 10.1089/1066527041410418
Amit, M. et al. Differential GC content between exons and introns establishes distinct strategies of splice-site recognition. Cell Rep. 1, 543–556 (2012).
pubmed: 22832277
doi: 10.1016/j.celrep.2012.03.013
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792
pmcid: 4402510
doi: 10.1093/nar/gkv007
Wachutka, L., Caizzi, L., Gagneur, J. & Cramer, P. Global donor and acceptor splicing site kinetics in human cells. eLife 8 e45056 (2019).
Windhager, L. et al. Ultrashort and progressive 4sU-tagging reveals key characteristics of RNA processing at nucleotide resolution. Genome Res. 22, 2031–2042 (2012).
pubmed: 22539649
pmcid: 3460197
doi: 10.1101/gr.131847.111
Pai, A. A. et al. The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture. eLife 6, e32537 (2017).
Aebi, M. & Weissmann, C. Precision and orderliness in splicing. Trends Genet. 3, 102–107 (1987).
doi: 10.1016/0168-9525(87)90193-4
Li, S. et al. Global co-transcriptional splicing in arabidopsis and the correlation with splicing regulation in mature RNAs. Mol. Plant 13, 266–277 (2020).
pubmed: 31759129
doi: 10.1016/j.molp.2019.11.003
Zhu, D. et al. The features and regulation of co-transcriptional splicing in Arabidopsis. Mol. Plant 13, 278–294 (2020).
pubmed: 31760161
doi: 10.1016/j.molp.2019.11.004
Veloso, A. et al. Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications. Genome Res. 24, 896–905 (2014).
pubmed: 24714810
pmcid: 4032854
doi: 10.1101/gr.171405.113
Rabani, M. et al. High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies. Cell 159, 1698–1710 (2014).
pubmed: 25497548
pmcid: 4272607
doi: 10.1016/j.cell.2014.11.015
Ding, F. & Elowitz, M. B. Constitutive splicing and economies of scale in gene expression. Nat. Struct. Mol. Biol. 26, 424–432 (2019).
pubmed: 31133700
pmcid: 6663491
doi: 10.1038/s41594-019-0226-x
Yoshihama, M. et al. The human ribosomal protein genes: sequencing and comparative analysis of 73 genes. Genome Res. 12, 379–390 (2002).
pubmed: 11875025
pmcid: 155282
doi: 10.1101/gr.214202
Heyn, P., Kalinka, A. T., Tomancak, P. & Neugebauer, K. M. Introns and gene expression: cellular constraints, transcriptional regulation, and evolutionary consequences. Bioessays 37, 148–154 (2015).
pubmed: 25400101
doi: 10.1002/bies.201400138
Tullai, J. W. et al. Immediate-early and delayed primary response genes are distinct in function and genomic architecture. J. Biol. Chem. 282, 23981–23995 (2007).
pubmed: 17575275
doi: 10.1074/jbc.M702044200
Gelfman, S. et al. Changes in exon-intron structure during vertebrate evolution affect the splicing pattern of exons. Genome Res. 22, 35–50 (2012).
pubmed: 21974994
pmcid: 3246205
doi: 10.1101/gr.119834.110
Jonkers, I., Kwak, H. & Lis, J. T. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife 3, e02407 (2014).
pubmed: 24843027
pmcid: 4001325
doi: 10.7554/eLife.02407
Chen, F. X., Smith, E. R. & Shilatifard, A. Born to run: control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 19, 464–478 (2018).
pubmed: 29740129
doi: 10.1038/s41580-018-0010-5
Dowhan, D. H. et al. Steroid hormone receptor coactivation and alternative RNA splicing by U2AF65-related proteins CAPERalpha and CAPERbeta. Mol. Cell 17, 429–439 (2005).
pubmed: 15694343
doi: 10.1016/j.molcel.2004.12.025
Auboeuf, D., Honig, A., Berget, S. M. & O’Malley, B. W. Coordinate regulation of transcription and splicing by steroid receptor coregulators. Science 298, 416–419 (2002).
pubmed: 12376702
doi: 10.1126/science.1073734
Gordon, J. M., Phizicky, D. V. & Neugebauer, K. M. Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision. Curr. Opin. Genet. Dev. 67, 67–76 (2020).
pubmed: 33291060
pmcid: 8084925
doi: 10.1016/j.gde.2020.11.002
Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, e47 (2019).
pubmed: 30783653
pmcid: 6486549
doi: 10.1093/nar/gkz114
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).
pubmed: 22517427
doi: 10.1093/bib/bbs017
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
pubmed: 25690850
pmcid: 4643835
doi: 10.1038/nbt.3122
Pertea, G. & Pertea, M. GFF utilities: GffRead and GffCompare. F1000Res 9, ISCB Comm J-304 (2020).
Law, C. W. et al. RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Res 5, ISCB Comm J-1408 (2016).
Eng, L. et al. Nonclassical splicing mutations in the coding and noncoding regions of the ATM Gene: maximum entropy estimates of splice junction strengths. Hum. Mutat. 23, 67–76 (2004).
pubmed: 14695534
doi: 10.1002/humu.10295
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278
pmcid: 2832824
doi: 10.1093/bioinformatics/btq033
Conrad, T. & Orom, U. A. Cellular fractionation and isolation of chromatin-associated RNA. Methods Mol. Biol. 1468, 1–9 (2017).
pubmed: 27662865
doi: 10.1007/978-1-4939-4035-6_1