The Genomic Landscape of Early-Stage Ovarian High-Grade Serous Carcinoma.
Journal
Clinical cancer research : an official journal of the American Association for Cancer Research
ISSN: 1557-3265
Titre abrégé: Clin Cancer Res
Pays: United States
ID NLM: 9502500
Informations de publication
Date de publication:
01 07 2022
01 07 2022
Historique:
received:
15
08
2021
revised:
28
10
2021
accepted:
24
01
2022
pubmed:
11
4
2022
medline:
6
7
2022
entrez:
10
4
2022
Statut:
ppublish
Résumé
Ovarian high-grade serous carcinoma (HGSC) is usually diagnosed at late stage. We investigated whether late-stage HGSC has unique genomic characteristics consistent with acquisition of evolutionary advantage compared with early-stage tumors. We performed targeted next-generation sequencing and shallow whole-genome sequencing (sWGS) on pretreatment samples from 43 patients with FIGO stage I-IIA HGSC to investigate somatic mutations and copy-number (CN) alterations (SCNA). We compared results to pretreatment samples from 52 patients with stage IIIC/IV HGSC from the BriTROC-1 study. Age of diagnosis did not differ between early-stage and late-stage patients (median 61.3 years vs. 62.3 years, respectively). TP53 mutations were near-universal in both cohorts (89% early-stage, 100% late-stage), and there were no significant differences in the rates of other somatic mutations, including BRCA1 and BRCA2. We also did not observe cohort-specific focal SCNA that could explain biological behavior. However, ploidy was higher in late-stage (median, 3.0) than early-stage (median, 1.9) samples. CN signature exposures were significantly different between cohorts, with greater relative signature 3 exposure in early-stage and greater signature 4 in late-stage. Unsupervised clustering based on CN signatures identified three clusters that were prognostic. Early-stage and late-stage HGSCs have highly similar patterns of mutation and focal SCNA. However, CN signature analysis showed that late-stage disease has distinct signature exposures consistent with whole-genome duplication. Further analyses will be required to ascertain whether these differences reflect genuine biological differences between early-stage and late-stage or simply time-related markers of evolutionary fitness. See related commentary by Yang et al., p. 2730.
Identifiants
pubmed: 35398881
pii: 694200
doi: 10.1158/1078-0432.CCR-21-1643
pmc: PMC7612959
mid: EMS141015
doi:
Types de publication
Research Support, Non-U.S. Gov't
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2911-2922Subventions
Organisme : Cancer Research UK
ID : A11592
Pays : United Kingdom
Organisme : Wellcome Trust
ID : RG92770
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A18072
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A22905
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A15601
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A19274
Pays : United Kingdom
Organisme : Department of Health
ID : IS-BRC-1215-20013
Pays : United Kingdom
Organisme : Department of Health
ID : P77646
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A15973
Pays : United Kingdom
Commentaires et corrections
Type : CommentIn
Informations de copyright
©2022 The Authors; Published by the American Association for Cancer Research.
Références
Sci Rep. 2017 Feb 24;7:43169
pubmed: 28233799
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Clin Cancer Res. 2017 Dec 15;23(24):7633-7640
pubmed: 28954785
Nat Genet. 2018 Aug;50(8):1189-1195
pubmed: 30013179
Clin Cancer Res. 2021 Jun 1;27(11):3201-3214
pubmed: 33741650
Dis Model Mech. 2021 Nov 1;14(11):
pubmed: 34569598
J Pathol. 2010 May;221(1):49-56
pubmed: 20229506
Ann Oncol. 2014 Jun;25(6):1165-71
pubmed: 24631948
Nat Genet. 2013 Oct;45(10):1127-33
pubmed: 24071851
Nat Genet. 2018 Sep;50(9):1262-1270
pubmed: 30104763
N Engl J Med. 2011 Dec 29;365(26):2484-96
pubmed: 22204725
Br J Cancer. 2020 Feb;122(3):405-412
pubmed: 31780779
Cell. 2021 Apr 15;184(8):2239-2254.e39
pubmed: 33831375
Ann Oncol. 2016 Mar;27(3):532-9
pubmed: 26681675
PLoS Med. 2008 Dec 2;5(12):e232
pubmed: 19053170
N Engl J Med. 2019 Dec 19;381(25):2391-2402
pubmed: 31562799
Nature. 2011 Jun 29;474(7353):609-15
pubmed: 21720365
Nature. 2015 May 28;521(7553):489-94
pubmed: 26017449
Nat Commun. 2020 Feb 13;11(1):822
pubmed: 32054838
Genome Biol. 2016 Jun 06;17(1):122
pubmed: 27268795
Cancer Discov. 2014 Feb;4(2):175-185
pubmed: 24436049
BJOG. 2018 Oct;125(11):1451-1458
pubmed: 29460478
Genome Res. 2014 Dec;24(12):2022-32
pubmed: 25236618
Nucleic Acids Res. 2015 Aug 18;43(14):6945-58
pubmed: 25916844
Nat Genet. 2020 Mar;52(3):283-293
pubmed: 32139907
N Engl J Med. 2019 Dec 19;381(25):2416-2428
pubmed: 31851799
N Engl J Med. 2011 Dec 29;365(26):2473-83
pubmed: 22204724
Genome Res. 2012 Mar;22(3):568-76
pubmed: 22300766
Cancer Discov. 2016 Dec;6(12):1342-1351
pubmed: 27856443
J Pathol. 2007 Jan;211(1):26-35
pubmed: 17117391
Nat Commun. 2017 Oct 23;8(1):1093
pubmed: 29061967
Bioinformatics. 2012 Jul 15;28(14):1811-7
pubmed: 22581179
Nat Rev Mol Cell Biol. 2004 Jan;5(1):45-54
pubmed: 14708009
Clin Cancer Res. 2008 Aug 15;14(16):5198-208
pubmed: 18698038
Ann Oncol. 2000 Mar;11(3):281-8
pubmed: 10811493
Br J Cancer. 2017 May 9;116(10):1294-1301
pubmed: 28359078