Identifying loci controlling total starch content of leaf in Nicotiana tabacum through genome-wide association study.


Journal

Functional & integrative genomics
ISSN: 1438-7948
Titre abrégé: Funct Integr Genomics
Pays: Germany
ID NLM: 100939343

Informations de publication

Date de publication:
Aug 2022
Historique:
received: 19 11 2021
accepted: 22 03 2022
revised: 07 03 2022
pubmed: 12 4 2022
medline: 10 8 2022
entrez: 11 4 2022
Statut: ppublish

Résumé

Starch is an important primary metabolite in plants, which can provide bioenergy for fuel ethanol production. There are many studies focusing on starch metabolism in Arabidopsis, maize, and rice, but few reports have been made on the starch content of tobacco leaves. Hence, to identify the marker-trait associations and isolate the candidate genes related to starch content of tobacco leaf, the genome-wide association study (GWAS) was performed using a multiparent advanced generation intercross (MAGIC) population consisting of 276 accessions genotyped by a 430 K SNP array. In this study, we detected the leaf starch content of tobacco plants cultivated in two places (Zhucheng and Chenzhou), which showed a wide variation of starch content in the population. A total of 28 and 45 significant single-nucleotide polymorphism (SNP) loci associated with leaf starch content were identified by single-locus and multi-locus GWAS models, respectively, and the phenotypic variance explained by these loci varied from 1.80 to - 14.73%. Furthermore, among these quantitative trait loci (QTLs), one SNP, AX-106011713 located on chromosome 19, was detected repeatedly in multiple models and two environments, which was selected for linkage disequilibrium (LD) analysis to obtain the target candidate region. Through gene annotation, haplotype, and gene expression analysis, two candidate genes encoding E3 ubiquitin-protein ligase (Ntab0823160) and fructose-bisphosphate aldolase (Ntab0375050) were obtained. Results showed that the variety carrying the beneficial alleles of the two candidate genes had higher gene expression level and leaf starch content, suggesting the potential role of candidate genes in enhancing the level of tobacco leaf starch content. Furthermore, silencing of Ntab0823160 in tobacco leaves reduced the content of total starch to 39.41-69.75% of that in the wide type plants. Taken together, our results provide useful resources for further investigation of the starch metabolic pathway and are also beneficial for the creation of eco-friendly cultivars with increased accumulation of leaf starch content.

Identifiants

pubmed: 35404023
doi: 10.1007/s10142-022-00851-x
pii: 10.1007/s10142-022-00851-x
doi:

Substances chimiques

Starch 9005-25-8

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

537-552

Subventions

Organisme : Tobacco Genome Projects of CNTC
ID : 110201901020 (JY-07)
Organisme : Science and Technology Projects of Henan Tobacco Company of CNTC
ID : 2021410000240021

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Andersson M, Turesson H, Arrivault S et al (2018) Inhibition of plastid PPase and NTT leads to major changes in starch and tuber formation in potato. J Exp Bot 69:1913–1924. https://doi.org/10.1093/jxb/ery051
doi: 10.1093/jxb/ery051 pubmed: 29538769 pmcid: 6018912
Aoyama S, Terada S, Sanagi M et al (2017) Membrane-localized ubiquitin ligase ATL15 functions in sugar-responsive growth regulation in Arabidopsis. Biochem Biophys Res Commun 491:33–39. https://doi.org/10.1016/j.bbrc.2017.07.028
doi: 10.1016/j.bbrc.2017.07.028 pubmed: 28690153
Andrianov V, Borisjuk N, Pogrebnyak N et al (2010) Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol J 8:277–287. https://doi.org/10.1111/j.1467-7652.2009.00458.x
doi: 10.1111/j.1467-7652.2009.00458.x pubmed: 20051035
Asatsuma S, Sawada C, Itoh K et al (2005) Involvement of α-amylase I-1 in starch degradation in rice chloroplasts. Plant Cell Physiol 46:858–869. https://doi.org/10.1093/pcp/pci091
doi: 10.1093/pcp/pci091 pubmed: 15821023
Baker RF, Braun DM (2007) tie-dyed1 functions non-cell autonomously to control carbohydrate accumulation in maize leaves. Plant Physiol 144:867–878. https://doi.org/10.1104/pp.107.098814
doi: 10.1104/pp.107.098814 pubmed: 17434986 pmcid: 1914200
Baunsgaard L, Lütken H, Mikkelsen R et al (2005) A novel isoform of glucan, water dikinase phosphorylates pre-phosphorylated α-glucans and is involved in starch degradation in Arabidopsis. Plant J 41:595–605. https://doi.org/10.1111/j.1365-313X.2004.02322.x
doi: 10.1111/j.1365-313X.2004.02322.x pubmed: 15686522
Bradbury PJ, Zhang Z, Kroon DE et al (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. https://doi.org/10.1093/bioinformatics/btm308
doi: 10.1093/bioinformatics/btm308 pubmed: 17586829
Boehlein SK, Shaw JR, Boehlein TJ et al (2018) Fundamental differences in starch synthesis in the maize leaf, embryo, ovary and endosperm. Plant J 96:595–606. https://doi.org/10.1111/tpj.14053
doi: 10.1111/tpj.14053 pubmed: 30062763
Burk DH, Liu B, Zhong R et al (2001) A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13:807–827
pubmed: 11283338 pmcid: 135546
Cai Y, Li S, Jiao G et al (2018) OsPK2 encodes a plastidic pyruvate kinase involved in rice endosperm starch synthesis, compound granule formation and grain filling. Plant Biotechnol J 16:1878–1891. https://doi.org/10.1111/pbi.12923
doi: 10.1111/pbi.12923 pubmed: 29577566 pmcid: 6181219
Carrari F, Coll-Garcia D, Schauer N et al (2005) Deficiency of a plastidial adenylate kinase in arabidopsis results in elevated photosynthetic amino acid biosynthesis and enhanced growth. Plant Physiol 137:70–82. https://doi.org/10.1104/pp.104.056143
doi: 10.1104/pp.104.056143 pubmed: 15618410 pmcid: 548839
Chen Y, Gao Y, Li T et al (2021) Overexpression of NtAGPase small subunit gene increases leaf starch content and tobacco biomass. Shengwu Gongcheng Xuebao Chinese J Biotechnol 37:2845–2855. https://doi.org/10.13345/j.cjb.210149
Chen S, Hajirezaei M, Börnke F (2005) Differential expression of sucrose-phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves. Plant Physiol 139:1163–1174. https://doi.org/10.1104/pp.105.069468
doi: 10.1104/pp.105.069468 pubmed: 16244140 pmcid: 1283755
Corbesier L, Lejeune P, Bernier G (1998) The role of carbohydrates in the induction of flowering thaliana: comparison between the wild type and a star. Planta 206:131–137
doi: 10.1007/s004250050383
Dong X, Gao Y, Chen W et al (2015) Spatiotemporal distribution of phenolamides and the genetics of natural variation of hydroxycinnamoyl spermidine in rice. Mol Plant 8:111–121. https://doi.org/10.1016/j.molp.2014.11.003
doi: 10.1016/j.molp.2014.11.003 pubmed: 25578276
Emes MJ, Bowsher CG, Hedley C et al (2003) Starch synthesis and carbon partitioning in developing endosperm. J Exp Bot 54:569–575. https://doi.org/10.1093/jxb/erg089
doi: 10.1093/jxb/erg089 pubmed: 12508067
Fulton DC, Stettler M, Mettler T et al (2008) β-Amylase4, a noncatalytic protein required for starch breakdown, acts upstream of three active β-amylases in Arabidopsis chloroplasts. Plant Cell 20:1040–1058. https://doi.org/10.1105/tpc.107.056507
doi: 10.1105/tpc.107.056507 pubmed: 18390594 pmcid: 2390740
George GM, van der Merwe MJ, Nunes-Nesi A et al (2010) Virus-induced gene silencing of plastidial soluble inorganic pyrophosphatase impairs essential leaf anabolic pathways and reduces drought stress tolerance in Nicotiana benthamiana. Plant Physiol 154:55–66. https://doi.org/10.1104/pp.110.157776
doi: 10.1104/pp.110.157776 pubmed: 20605913 pmcid: 2938153
Haake V, Zrenner R, Sonnewald U, Stitt M (1998) A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants. Plant J 14:147–157
doi: 10.1046/j.1365-313X.1998.00089.x
Hanson KR, Mchale NA (1988) A starchless mutant of Nicotiana sylvestris containing a modified plastid phosphoglucomutase. Plant Physiol 88:838–844
doi: 10.1104/pp.88.3.838
Hirose T, Aoki N, Harada Y et al (2013) Disruption of a rice gene for α-glucan water dikinase, OsGWD1, leads to hyperaccumulation of starch in leaves but exhibits limited effects on growth. Front Plant Sci 4:1–9. https://doi.org/10.3389/fpls.2013.00147
doi: 10.3389/fpls.2013.00147
Hu S, Wang M, Zhang X, et al (2021) Genetic basis of kernel starch content decoded in a maize multi-parent population. Plant Biotechnol J 19:2192–2205. https://doi.org/10.1111/pbi.13645
Huang BE, Verbyla KL, Verbyla AP et al (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128:999–1017. https://doi.org/10.1007/s00122-015-2506-0
doi: 10.1007/s00122-015-2506-0 pubmed: 25855139
Huang LF, Liu YK, Su SC et al (2020) Genetic engineering of transitory starch accumulation by knockdown of OsSEX4 in rice plants for enhanced bioethanol production. Biotechnol Bioeng 117:933–944. https://doi.org/10.1002/bit.27262
doi: 10.1002/bit.27262 pubmed: 31889302
James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222. https://doi.org/10.1016/S1369-5266(03)00042-6
doi: 10.1016/S1369-5266(03)00042-6 pubmed: 12753970
Khan SU, Yangmiao J, Liu S, et al (2019) Genome-wide association studies in the genetic dissection of ovule number, seed number, and seed weight in Brassica napus L. Ind Crops Prod 142:111877. https://doi.org/10.1016/j.indcrop.2019.111877
Kötting O, Santelia D, Edner C et al (2009) STARCH-EXCESS4 is a laforin-like phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana. Plant Cell 21:334–346. https://doi.org/10.1105/tpc.108.064360
doi: 10.1105/tpc.108.064360 pubmed: 19141707 pmcid: 2648081
Kover PX, Valdar W, Trakalo J, et al (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e1000551. https://doi.org/10.1371/journal.pgen.1000551
Li N, Lin B, Wang H et al (2019) Natural variation in Zm FBL41 confers banded leaf and sheath blight resistance in maize. Nat Genet 51:1540–1548. https://doi.org/10.1038/s41588-019-0503-y
doi: 10.1038/s41588-019-0503-y pubmed: 31570888
Lin MT, Occhialini A, Andralojc PJ et al (2014) A faster Rubisco with potential to increase photosynthesis in crops. Nature 513:547–550. https://doi.org/10.1038/nature13776
doi: 10.1038/nature13776 pubmed: 25231869 pmcid: 4176977
Lin TP, Caspar T, Somerville C, Preiss J (1988) Isolation and characterization of a starchless mutant of Arabidopsis thaliana (L.) Heynh lacking ADP glucose pyrophosphorylase activity. Plant Physiol 86:1131–1135
doi: 10.1104/pp.86.4.1131
Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429. https://doi.org/10.1046/j.1365-313X.2002.01297.x
doi: 10.1046/j.1365-313X.2002.01297.x pubmed: 12028572
Luo J (2015) Metabolite-based genome-wide association studies in plants. Curr Opin Plant Biol 24:31–38. https://doi.org/10.1016/j.pbi.2015.01.006
doi: 10.1016/j.pbi.2015.01.006 pubmed: 25637954
MacNeill GJ, Mehrpouyan S, Minow MAA et al (2017) Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. J Exp Bot 68:4433–4453. https://doi.org/10.1093/jxb/erx291
doi: 10.1093/jxb/erx291 pubmed: 28981786
Mérida A, Fettke J (2021) Starch granule initiation in Arabidopsis thaliana chloroplasts. Plant J 107:688–697. https://doi.org/10.1111/tpj.15359
doi: 10.1111/tpj.15359 pubmed: 34051021
Niittylä T, Messerli G, Trevisan M et al (2004) A previously unknown maltose transporter essential for starch degradation in leaves. New Ser 303:87–89
Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400
doi: 10.1093/jexbot/52.360.1383
Peng M, Gao Y, Chen W et al (2016) Evolutionarily distinct BAHD N-acyltransferases are responsible for natural variation of aromatic amine conjugates in rice. Plant Cell 28:1533–1550. https://doi.org/10.1105/tpc.16.00265
doi: 10.1105/tpc.16.00265 pubmed: 27354554 pmcid: 4981135
Reid WV, Ali MK, Field CB (2020) The future of bioenergy. Glob Chang Biol 26:274–286. https://doi.org/10.1111/gcb.14883
doi: 10.1111/gcb.14883 pubmed: 31642554
Ritte G, Lloyd JR, Eckermann N et al (2002) The starch-related R1 protein is an-glucan, water dikinase. Proc Natl Acad Sci 99:7166–7171
doi: 10.1073/pnas.062053099
Sallam A, Martsch R (2015) Association mapping for frost tolerance using multi-parent advanced generation inter-cross (MAGIC) population in faba bean (Vicia faba L.). Genetica 143:501–514. https://doi.org/10.1007/s10709-015-9848-z
doi: 10.1007/s10709-015-9848-z pubmed: 26041397
Sanz-Barrio R, Corral-Martinez P, Ancin M et al (2013) Overexpression of plastidial thioredoxin f leads to enhanced starch accumulation in tobacco leaves. Plant Biotechnol J 11:618–627. https://doi.org/10.1111/pbi.12052
doi: 10.1111/pbi.12052 pubmed: 23398733
Sarah S, Moffatt BA (2004) Applying high throughput techniques in the study of adenosine kinase in plant metabolism and development. Front Biosci 9:1771–1781
doi: 10.2741/1346
Schulze W, Stitt M, Schulze E-D et al (1991) A quantification of the significance of assimilatory starch for growth of Arabidopsis thaliana L. Heynh. Plant Physiol 95:890–895
Schönhals EM, Ding J, Ritter E et al (2017) Physical mapping of QTL for tuber yield, starch content and starch yield in tetraploid potato (Solanum tuberosum L.) by means of genome wide genotyping by sequencing and the 8.3 K SolCAP SNP array. BMC Genomics 18:1–20. https://doi.org/10.1186/s12864-017-3979-9
doi: 10.1186/s12864-017-3979-9
Si L, Chen J, Huang X et al (2016) OsSPL13 controls grain size in cultivated rice. Nat Genet 48:447–456. https://doi.org/10.1038/ng.3518
doi: 10.1038/ng.3518 pubmed: 26950093
Slewinski TL, Meeley R, Braun DM (2009) Sucrose transporter1 functions in phloem loading in maize leaves. J Exp Bot 60:881–892. https://doi.org/10.1093/jxb/ern335
doi: 10.1093/jxb/ern335 pubmed: 19181865 pmcid: 2652052
Somerville C (2007) Biofuels. Curr Biol 17:115–119. https://doi.org/10.1016/j.cub.2007.01.010
doi: 10.1016/j.cub.2007.01.010
Stitt M, Zeeman SC (2012) Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol 15:282–292. https://doi.org/10.1016/j.pbi.2012.03.016
doi: 10.1016/j.pbi.2012.03.016 pubmed: 22541711
Sun C, Palmqvist S, Olsson H et al (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15:2076–2092. https://doi.org/10.1105/tpc.014597
doi: 10.1105/tpc.014597 pubmed: 12953112 pmcid: 181332
Sun Y, Jiang Z, Liu H et al (2020) Genome-wide association analysis of tobacco flowering time. Chinese Tob Sci 41:1–6
Tamoi M, Nagaoka M, Miyagawa Y, Shigeoka S (2006) Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Plant Cell Physiol 47:380–390. https://doi.org/10.1093/pcp/pcj004
doi: 10.1093/pcp/pcj004 pubmed: 16415064
Tieman D, Zhu G, Resende MFR et al (2017) Plant Science A chemical genetic roadmap to improved tomato flavor Downloaded from. Science (80- ) 355:391–394
Tsai HL, Lue WL, Lu KJ et al (2009) Starch synthesis in Arabidopsis is achieved by spatial cotranscription of core starch metabolism genes. Plant Physiol 151:1582–1595. https://doi.org/10.1104/pp.109.144196
doi: 10.1104/pp.109.144196 pubmed: 19759345 pmcid: 2773087
Uematsu K, Suzuki N, Iwamae T et al (2012) Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. J Exp Bot 63:3001–3009. https://doi.org/10.1093/jxb/ers004
doi: 10.1093/jxb/ers004 pubmed: 22323273
Wang RH, Wang TY, Li Y (2007) Linkage disequilibrium in plant genomes. Hereditas 29:1317–1323. https://doi.org/10.1360/yc-007-1317
doi: 10.1360/yc-007-1317 pubmed: 17989039
Wen W, Li D, Li X et al (2014) Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat Commun 5:1–10. https://doi.org/10.1038/ncomms4438
doi: 10.1038/ncomms4438
Xiao Q, Wang Y, Du J et al (2017) ZmMYB14 is an important transcription factor involved in the regulation of the activity of the ZmBT1 promoter in starch biosynthesis in maize. FEBS J 284:3079–3099. https://doi.org/10.1111/febs.14179
doi: 10.1111/febs.14179 pubmed: 28726249
Yano K, Yamamoto E, Aya K et al (2016) Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat Genet 48:927–934. https://doi.org/10.1038/ng.3596
doi: 10.1038/ng.3596 pubmed: 27322545
Yu TS, Lue W-L, Wang S-M, Chen J (2000) Mutation of Arabidopsis plastid phosphoglucose isomerase affects leaf starch synthesis and floral initiation 1. Plant Physiol 123:319–325
doi: 10.1104/pp.123.1.319
Yun MS, Umemoto T, Kawagoe Y (2011) Rice debranching enzyme isoamylase3 facilitates starch metabolism and affects plastid morphogenesis. Plant Cell Physiol 52:1068–1082. https://doi.org/10.1093/pcp/pcr058
doi: 10.1093/pcp/pcr058 pubmed: 21551159 pmcid: 3110883
Zhan Y, Li H, Sui M, et al (2020) Genome wide association mapping for tocopherol concentration in soybean seeds across multiple environments. Ind Crops Prod 154:112674.   https://doi.org/10.1016/j.indcrop.2020.112674
Zhang H, Cui W (2006) Research progress in the factor affecting the content of starch in flue!cured tobacco leaf. J Anhui Agri Sci 34:6530–6533
Zhang X, Myers AM, James MG (2005) Mutations affecting starch synthase III in Arabidopsis alter leaf starch structure and increase the rate of starch synthesis. Plant Physiol 138:663–674. https://doi.org/10.1104/pp.105.060319
doi: 10.1104/pp.105.060319 pubmed: 15908598 pmcid: 1150387
Zhong R, Teng Q, Haghighat M et al (2017) Cytosol-localized UDP-xylose synthases provide the major source of UDP-xylose for the biosynthesis of xylan and xyloglucan. Plant Cell Physiol 58:156–174. https://doi.org/10.1093/pcp/pcw179
doi: 10.1093/pcp/pcw179 pubmed: 28011867
Zhou Z, Jiang Y, Wang Z et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414. https://doi.org/10.1038/nbt.3096
doi: 10.1038/nbt.3096 pubmed: 25643055

Auteurs

Xin Xu (X)

China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.

Zhong Wang (Z)

China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.

Shixiao Xu (S)

Henan Agricultural University, Zhengzhou, 450002, China.

Min Xu (M)

Henan Tobacco Company of CNTC, Zhengzhou, 450018, China.

Lei He (L)

Henan Tobacco Company of CNTC, Zhengzhou, 450018, China.

Jianfeng Zhang (J)

China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.

Zhaopeng Luo (Z)

China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.

Xiaodong Xie (X)

China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.

Mingzhu Wu (M)

China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.

Jun Yang (J)

China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China. yangjun@ztri.com.cn.

Articles similaires

Humans Macular Degeneration Mendelian Randomization Analysis Life Style Genome-Wide Association Study
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria

Classifications MeSH