Chemical comparison and discrimination of two plant sources of Angelicae dahuricae Radix, Angelica dahurica and Angelica dahurica var. formosana, by HPLC-Q/TOF-MS and quantitative analysis of multiple components by a single marker.

Angelica dahurica Angelica dahurica var. formosana; high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-Q/TOF-MS) Chemometrics quantitative analysis of multiple components by a single marker (QAMS)

Journal

Phytochemical analysis : PCA
ISSN: 1099-1565
Titre abrégé: Phytochem Anal
Pays: England
ID NLM: 9200492

Informations de publication

Date de publication:
Jul 2022
Historique:
revised: 07 04 2022
received: 22 12 2021
accepted: 12 04 2022
pubmed: 27 4 2022
medline: 7 7 2022
entrez: 26 4 2022
Statut: ppublish

Résumé

Angelica dahurica(BZ) and Angelica dahurica var. formosana(HBZ) are two plant sources of Angelicae dahuricae Radix. Although BZ and HBZ are commonly used herbal medicines with great medicinal and dietary values, study on their phytochemicals and bioactive compositions is limited. To compare the chemical compositions of BZ and HBZ and find the chemical makers for discrimination and quality evaluation of the two botanical origins of Angelicae dahuricae Radix. A high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was established for chemical profiling of BZ and HBZ. Then, a quantitative analysis of multiple components by a single marker method was developed for simultaneous determination of nine bioactive coumarins (xanthotoxol, oxypeucedanin hydrate, byakangelicin, xanthotoxin, bergapten, oxypeucedanin, phellopterin, imperatorin and isoimperatorin). Moreover, chemometrics were performed to compare and discriminate BZ and HBZ samples. A total of 30 coumarins compounds were identified, and the chemical compositions in BZ and HBZ were quite similar. The quantitative analysis showed that there were significant differences in the contents of bioactive coumarins, and the chemometric analysis indicated five coumarins (xanthotoxol, xanthotoxin, bergapten, phellopterin and isoimperatorin) were responsible for the significant differences between BZ and HBZ, which could be used as chemical markers to distinguish the two original plant sources of Angelicae dahuricae Radix. The present work provided useful information for understanding the chemical differences between BZ and HBZ and also provided feasible methods for quality evaluation and discrimination of herbal medicines originating from multiple botanical sources.

Identifiants

pubmed: 35470493
doi: 10.1002/pca.3129
doi:

Substances chimiques

Coumarins 0
Drugs, Chinese Herbal 0
5-Methoxypsoralen 4FVK84C92X
Methoxsalen U4VJ29L7BQ

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

776-791

Subventions

Organisme : Innovation Team of Hebei Province Modern Agricultural Industry Technology System
ID : HBCT2018060205
Organisme : Research Foundation of Hebei Provincial Administration of Traditional Chinese Medicine
ID : 2022100
Organisme : Research Foundation of Hebei Provincial Administration of Traditional Chinese Medicine
ID : Z2022019
Organisme : Research Foundation of Hebei Province Education Department
ID : BJ2019006
Organisme : Natural Science Foundation of Hebei Province
ID : H2021423004

Informations de copyright

© 2022 John Wiley & Sons Ltd.

Références

Zhao AH, Zhang YB, Yang XW. Simultaneous determination and pharmacokinetics of sixteen Angelicae dahurica coumarins in vivo by LC-ESI-MS/MS following oral delivery in rats. Phytomedicine. 2016;23(10):1029-1036. doi:10.1016/j.phymed.2016.06.015
Hu D, Guo J, Li T, et al. Comparison and identification of the aroma-active compounds in the root of Angelica dahurica. Molecules. 2019;24(23). doi:10.3390/molecules24234352
Chen L, Xu W, Yang Q, et al. Imperatorin alleviates cancer cachexia and prevents muscle wasting via directly inhibiting STAT3. Pharmacol Res. 2020;158:104871. doi:10.1016/j.phrs.2020.104871
Yang WT, Ke CY, Wu WT, Tseng YH, Lee RP. Antimicrobial and anti-inflammatory potential of Angelica dahurica and Rheum officinale extract accelerates wound healing in Staphylococcus aureus-infected wounds. Sci Rep. 2020;10(1):5596. doi:10.1038/s41598-020-62581-z
Fan G, Deng R, Zhou L, et al. Development of a rapid resolution liquid chromatographic method combined with chemometrics for quality control of Angelicae dahuricae radix. Phytochem Anal. 2012;23(4):299-307. doi:10.1002/pca.1358
Shu P, Li J, Fei Y, et al. Isolation, structure elucidation, tyrosinase inhibitory, and antioxidant evaluation of the constituents from Angelica dahurica roots. J Nat Med. 2020;74(2):456-462. doi:10.1007/s11418-019-01375-8
Chinese Pharmacopoeia Comission. Pharmacopeia op the people's Republic of China. Vol. I. Beijing, China: Chinese Medical Science Press; 2020:109-110.
Kim HS, Shin BR, Lee HK, et al. Dendritic cell activation by polysaccharide isolated from Angelica dahurica. Food Chem Toxicol. 2013;55:241-247. doi:10.1016/j.fct.2012.12.007
Li B, Zhang X, Wang J, et al. Simultaneous characterisation of fifty coumarins from the roots of Angelica dahurica by off-line two-dimensional high-performance liquid chromatography coupled with electrospray ionisation tandem mass spectrometry. Phytochem Anal. 2014;25(3):229-240. doi:10.1002/pca.2496
Han HS, Jeon H, Kang SC. Phellopterin isolated from Angelica dahurica reduces blood glucose level in diabetic mice. Heliyon. 2018;4(3):e00577. doi:10.1016/j.heliyon.2018.e00577
Lee BW, Ha TKQ, Cho HM, et al. Antiviral activity of furanocoumarins isolated from Angelica dahurica against influenza a viruses H1N1 and H9N2. J Ethnopharmacol. 2020;259:112945. doi:10.1016/j.jep.2020.112945
Luo L, Sun T, Yang L, et al. Scopoletin ameliorates anxiety-like behaviors in complete Freund's adjuvant-induced mouse model. Mol Brain. 2020;13(1):15. doi:10.1186/s13041-020-0560-2
Yang WQ, Zhu ZX, Song YL, et al. Dimeric furanocoumarins from the roots of Angelica dahurica. Nat Prod Res. 2017;31(8):870-877. doi:10.1080/14786419.2016.1250090
Wang F, Huang S, Chen Q, et al. Chemical characterisation and quantification of the major constituents in the Chinese herbal formula Jian-Pi-Yi-Shen pill by UPLC-Q-TOF-MS/MS and HPLC-QQQ-MS/MS. Phytochem Anal. 2020;31(6):915-929. doi:10.1002/pca.2963
Dou Z, Dai Y, Zhou Y, Wang S. Quality evaluation of rhubarb based on qualitative analysis of the HPLC fingerprint and UFLC-Q-TOF-MS/MS combined with quantitative analysis of eight anthraquinone glycosides by QAMS. Biomed Chromatogr. 2021;35(6):e5074. doi:10.1002/bmc.5074
Zeng SL, Li SZ, Lai CJ, et al. Evaluation of anti-lipase activity and bioactive flavonoids in the Citri Reticulatae Pericarpium from different harvest time. Phytomedicine. 2018;43:103-109. doi:10.1016/j.phymed.2018.04.008
Mercolini L, Mandrioli R, Ferranti A, et al. Quantitative evaluation of auraptene and umbelliferone, chemopreventive coumarins in citrus fruits, by HPLC-UV-FL-MS. J Agric Food Chem. 2013;61(8):1694-1701. doi:10.1021/jf303060b
Zheng X, Zhang X, Sheng X, et al. Simultaneous characterization and quantitation of 11 coumarins in Radix Angelicae Dahuricae by high performance liquid chromatography with electrospray tandem mass spectrometry. J Pharm Biomed Anal. 2010;51(3):599-605. doi:10.1016/j.jpba.2009.09.030
Kang J, Zhou L, Sun J, Han J, Guo DA. Chromatographic fingerprint analysis and characterization of furocoumarins in the roots of Angelica dahurica by HPLC/DAD/ESI-MSn technique. J Pharm Biomed Anal. 2008;47(4-5):778-785. doi:10.1016/j.jpba.2008.03.010
Zhang H, Gong C, Lv L, et al. Rapid separation and identification of furocoumarins in Angelica dahurica by high-performance liquid chromatography with diode-array detection, time-of-flight mass spectrometry and quadrupole ion trap mass spectrometry. Rapid Commun Mass Spectrom. 2009;23(14):2167-2175. doi:10.1002/rcm.4123
Zhi W, Gao H, Fu X, Wang W. Multi-components quantitation by one marker new method for quality evaluation of Chinese herbal medicine. Zhongguo Zhong Yao Za Zhi. 2006;31:1925-1928.
Gao M, Han X, Huang J, et al. Simultaneous determination of multiple active 2-(2-phenylethyl)chromone analogues in agarwood by HPLC, QAMS, and UPLC-MS. Phytochem Anal. 2021;32(3):412-422. doi:10.1002/pca.2989
Hernández-Fuentes GA, Peraza Campos AL, Ceballos-Magaña SG, Muñiz-Valencia R, Parra-Delgado H. HPLC-DAD method for the detection of five annopurpuricins in root samples of Annona purpurea. Phytochem Anal. 2020;31(4):472-479. doi:10.1002/pca.2910
Wu L, Zhang S, Zhou L, et al. Establishment and validation of the quantitative analysis of multi-components by single marker for the quality control of Qishen Yiqi dripping pills by high-performance liquid chromatography with charged aerosol detection. Phytochem Anal. 2021;32(6):942-956. doi:10.1002/pca.3037
Zhang RT, Qing WW, Yang L, et al. Fingerprint combining with quantitative analysis of multi-components by single marker for quality control of Chenxiang Huaqi tablets. Phytochem Anal. 2022;33(3):335-343. doi:10.1002/pca.3090
Shi B, Ding H, Wang L, et al. Investigation on the stability in plant metabolomics with a special focus on freeze-thaw cycles: LC-MS and NMR analysis to Cassiae Semen (Cassia obtusifolia L.) seeds as a case study. J Pharm Biomed Anal. 2021;204:114243. doi:10.1016/j.jpba.2021.114243
Hakeem Said I, Rezk A, Hussain I, et al. Metabolome comparison of bioactive and inactive Rhododendron extracts and identification of an antibacterial cannabinoid(s) from Rhododendron collettianum. Phytochem Anal. 2017;28(5):454-464. doi:10.1002/pca.2694

Auteurs

Huan Shi (H)

Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.

Ya-Qing Chang (YQ)

Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.

Xie Feng (X)

Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.

Gui-Ya Yang (GY)

Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.

Yu-Guang Zheng (YG)

Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.
Hebei Chemical and Pharmaceutical College, Shijiazhuang, China.

Qian Zheng (Q)

Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, China.

Lan-Lan Zhang (LL)

Hebei Yuzhilin Biotechnology Co., Ltd, Shijiazhuang, China.

Dan Zhang (D)

Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.

Long Guo (L)

Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.

Articles similaires

1.00
Oryza Agricultural Irrigation Potassium Sodium Soil
Rhizosphere Glycine max Seeds Soybean Oil Soil Microbiology
Humans Chromatography, High Pressure Liquid Acetaminophen COVID-19 SARS-CoV-2
Siderophores Herbicides Plant Weeds Lolium Actinobacteria

Classifications MeSH