Studies on enmetazobactam clarify mechanisms of widely used β-lactamase inhibitors.
antimicrobial resistance
enmetazobactam
mechanism-based inhibition
serine β-lactamase inhibitor
tazobactam
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
03 05 2022
03 05 2022
Historique:
entrez:
29
4
2022
pubmed:
30
4
2022
medline:
4
5
2022
Statut:
ppublish
Résumé
β-Lactams are the most important class of antibacterials, but their use is increasingly compromised by resistance, most importantly via serine β-lactamase (SBL)-catalyzed hydrolysis. The scope of β-lactam antibacterial activity can be substantially extended by coadministration with a penicillin-derived SBL inhibitor (SBLi), i.e., the penam sulfones tazobactam and sulbactam, which are mechanism-based inhibitors working by acylation of the nucleophilic serine. The new SBLi enmetazobactam, an N-methylated tazobactam derivative, has recently completed clinical trials. Biophysical studies on the mechanism of SBL inhibition by enmetazobactam reveal that it inhibits representatives of all SBL classes without undergoing substantial scaffold fragmentation, a finding that contrasts with previous reports on SBL inhibition by tazobactam and sulbactam. We therefore reinvestigated the mechanisms of tazobactam and sulbactam using mass spectrometry under denaturing and nondenaturing conditions, X-ray crystallography, and NMR spectroscopy. The results imply that the reported extensive fragmentation of penam sulfone–derived acyl–enzyme complexes does not substantially contribute to SBL inhibition. In addition to observation of previously identified inhibitor-induced SBL modifications, the results reveal that prolonged reaction of penam sulfones with SBLs can induce dehydration of the nucleophilic serine to give a dehydroalanine residue that undergoes reaction to give a previously unobserved lysinoalanine cross-link. The results clarify the mechanisms of action of widely clinically used SBLi, reveal limitations on the interpretation of mass spectrometry studies concerning mechanisms of SBLi, and will inform the development of new SBLi working by reaction to form hydrolytically stable acyl–enzyme complexes.
Identifiants
pubmed: 35486701
doi: 10.1073/pnas.2117310119
pmc: PMC9170034
doi:
Substances chimiques
Azabicyclo Compounds
0
Penicillins
0
Sulfones
0
Triazoles
0
beta-Lactamase Inhibitors
0
enmetazobactam
80VUN7L00C
beta-Lactamases
EC 3.5.2.6
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2117310119Subventions
Organisme : Medical Research Council
ID : MC_PC_16092
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/S50676X/1
Pays : United Kingdom
Organisme : MRF
ID : MRF_MRF-145-0004-TPG-AVISO
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/R000344/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 099141/Z/12/Z
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/N020413/1
Pays : United Kingdom
Références
J Biol Chem. 2005 Oct 14;280(41):34900-7
pubmed: 16055923
Biochim Biophys Acta. 2001 Jun 11;1547(2):196-205
pubmed: 11410275
Anal Biochem. 2012 Jan 1;420(1):41-7
pubmed: 21925482
Bioorg Med Chem Lett. 2014 Feb 1;24(3):780-5
pubmed: 24433862
J Med Chem. 1996 Sep 13;39(19):3712-22
pubmed: 8809160
Clin Microbiol Rev. 2010 Jan;23(1):160-201
pubmed: 20065329
Acta Crystallogr D Struct Biol. 2017 Feb 1;73(Pt 2):148-157
pubmed: 28177311
Biochemistry. 2007 Jul 24;46(29):8689-99
pubmed: 17595114
RSC Med Chem. 2020 Jul 2;11(8):876-884
pubmed: 33479682
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674
pubmed: 19461840
FEMS Microbiol Rev. 2000 Jul;24(3):251-62
pubmed: 10841972
Biochemistry. 2019 Feb 19;58(7):997-1009
pubmed: 30632739
Biochemistry. 2009 Oct 20;48(41):9912-20
pubmed: 19736945
J Am Chem Soc. 2015 Oct 14;137(40):12760-3
pubmed: 26421661
Biochemistry. 1984 Nov 20;23(24):5833-9
pubmed: 6098299
J Biol Chem. 2003 Dec 26;278(52):52724-9
pubmed: 14534312
Eur J Med Chem. 2019 Jan 15;162:679-734
pubmed: 30496988
ACS Infect Dis. 2020 Apr 10;6(4):577-587
pubmed: 31709791
Biochemistry. 2006 Oct 3;45(39):11895-904
pubmed: 17002290
Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14280-5
pubmed: 11724923
RSC Chem Biol. 2020 Nov 6;1(5):298-304
pubmed: 34458767
Arch Pharm (Weinheim). 2019 Jan;352(1):e1800248
pubmed: 30521146
Biochemistry. 2004 Nov 9;43(44):14111-7
pubmed: 15518561
Biochemistry. 2008 Apr 1;47(13):4094-101
pubmed: 18324783
Nat Protoc. 2007;2(3):715-26
pubmed: 17406634
J Biol Chem. 2000 Sep 1;275(35):26674-82
pubmed: 10837472
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
Biochemistry. 2007 Oct 9;46(40):11361-8
pubmed: 17848099
Nat Rev Drug Discov. 2011 Apr;10(4):307-17
pubmed: 21455239
J Am Chem Soc. 2009 Feb 18;131(6):2338-47
pubmed: 19161282
J Med Chem. 2013 Sep 12;56(17):6945-53
pubmed: 23898798
J Proteome Res. 2011 Apr 1;10(4):1794-805
pubmed: 21254760
J Biol Chem. 2011 Apr 22;286(16):14396-409
pubmed: 21345789
Clin Microbiol Rev. 2001 Oct;14(4):933-51, table of contents
pubmed: 11585791
Antimicrob Agents Chemother. 2011 Jul;55(7):3465-75
pubmed: 21555770
Anal Biochem. 2011 Sep 15;416(2):206-10
pubmed: 21669181
Biochemistry. 2001 Feb 13;40(6):1861-6
pubmed: 11327849
J Med Chem. 2015 May 14;58(9):3682-92
pubmed: 25782055
Antimicrob Agents Chemother. 1978 Sep;14(3):414-9
pubmed: 309306
Biochemistry. 2004 Feb 3;43(4):843-8
pubmed: 14744126
Biomolecules. 2020 Jun 12;10(6):
pubmed: 32545682
J Am Chem Soc. 2013 Feb 27;135(8):2895-8
pubmed: 23406484
J Biol Chem. 2003 Dec 5;278(49):48674-83
pubmed: 14506256
J Am Chem Soc. 2005 Dec 14;127(49):17556-64
pubmed: 16332108
Curr Opin Chem Biol. 2018 Oct;46:71-81
pubmed: 29913421
Antimicrob Agents Chemother. 1977 May;11(5):852-7
pubmed: 879738
J Biol Chem. 2004 May 7;279(19):19494-501
pubmed: 14757767
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501
pubmed: 20383002
Antimicrob Agents Chemother. 1984 Oct;26(4):580-2
pubmed: 6097169
Int J Antimicrob Agents. 2020 Jul;56(1):105925
pubmed: 32084512
J Med Chem. 2020 Mar 26;63(6):2789-2801
pubmed: 31765155
Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1948-54
pubmed: 12393927
J Biol Chem. 2013 Sep 27;288(39):27960-71
pubmed: 23913691
Antimicrob Agents Chemother. 2019 Apr 25;63(5):
pubmed: 30858223
Methods Enzymol. 1979;63:437-67
pubmed: 502865
Antimicrob Agents Chemother. 2020 May 21;64(6):
pubmed: 32253212
Biochemistry. 2009 Dec 1;48(47):11252-63
pubmed: 19860471
Antimicrob Agents Chemother. 2021 Jan 20;65(2):
pubmed: 33199391
Antimicrob Agents Chemother. 2010 Mar;54(3):969-76
pubmed: 19995920
Nat Chem Biol. 2019 Oct;15(10):959-965
pubmed: 31406373