Integrated analysis of single-cell and bulk RNA sequencing data reveals a pan-cancer stemness signature predicting immunotherapy response.
Big data analysis
Immune checkpoint therapy
Pan-cancer
Single-cell sequencing
Stemness
Journal
Genome medicine
ISSN: 1756-994X
Titre abrégé: Genome Med
Pays: England
ID NLM: 101475844
Informations de publication
Date de publication:
29 04 2022
29 04 2022
Historique:
received:
24
07
2021
accepted:
19
04
2022
entrez:
29
4
2022
pubmed:
30
4
2022
medline:
4
5
2022
Statut:
epublish
Résumé
Although immune checkpoint inhibitor (ICI) is regarded as a breakthrough in cancer therapy, only a limited fraction of patients benefit from it. Cancer stemness can be the potential culprit in ICI resistance, but direct clinical evidence is lacking. Publicly available scRNA-Seq datasets derived from ICI-treated patients were collected and analyzed to elucidate the association between cancer stemness and ICI response. A novel stemness signature (Stem.Sig) was developed and validated using large-scale pan-cancer data, including 34 scRNA-Seq datasets, The Cancer Genome Atlas (TCGA) pan-cancer cohort, and 10 ICI transcriptomic cohorts. The therapeutic value of Stem.Sig genes was further explored using 17 CRISPR datasets that screened potential immunotherapy targets. Cancer stemness, as evaluated by CytoTRACE, was found to be significantly associated with ICI resistance in melanoma and basal cell carcinoma (both P < 0.001). Significantly negative association was found between Stem.Sig and anti-tumor immunity, while positive correlations were detected between Stem.Sig and intra-tumoral heterogenicity (ITH) / total mutational burden (TMB). Based on this signature, machine learning model predicted ICI response with an AUC of 0.71 in both validation and testing set. Remarkably, compared with previous well-established signatures, Stem.Sig achieved better predictive performance across multiple cancers. Moreover, we generated a gene list ranked by the average effect of each gene to enhance tumor immune response after genetic knockout across different CRISPR datasets. Then we matched Stem.Sig to this gene list and found Stem.Sig significantly enriched 3% top-ranked genes from the list (P = 0.03), including EMC3, BECN1, VPS35, PCBP2, VPS29, PSMF1, GCLC, KXD1, SPRR1B, PTMA, YBX1, CYP27B1, NACA, PPP1CA, TCEB2, PIGC, NR0B2, PEX13, SERF2, and ZBTB43, which were potential therapeutic targets. We revealed a robust link between cancer stemness and immunotherapy resistance and developed a promising signature, Stem.Sig, which showed increased performance in comparison to other signatures regarding ICI response prediction. This signature could serve as a competitive tool for patient selection of immunotherapy. Meanwhile, our study potentially paves the way for overcoming immune resistance by targeting stemness-associated genes.
Sections du résumé
BACKGROUND
Although immune checkpoint inhibitor (ICI) is regarded as a breakthrough in cancer therapy, only a limited fraction of patients benefit from it. Cancer stemness can be the potential culprit in ICI resistance, but direct clinical evidence is lacking.
METHODS
Publicly available scRNA-Seq datasets derived from ICI-treated patients were collected and analyzed to elucidate the association between cancer stemness and ICI response. A novel stemness signature (Stem.Sig) was developed and validated using large-scale pan-cancer data, including 34 scRNA-Seq datasets, The Cancer Genome Atlas (TCGA) pan-cancer cohort, and 10 ICI transcriptomic cohorts. The therapeutic value of Stem.Sig genes was further explored using 17 CRISPR datasets that screened potential immunotherapy targets.
RESULTS
Cancer stemness, as evaluated by CytoTRACE, was found to be significantly associated with ICI resistance in melanoma and basal cell carcinoma (both P < 0.001). Significantly negative association was found between Stem.Sig and anti-tumor immunity, while positive correlations were detected between Stem.Sig and intra-tumoral heterogenicity (ITH) / total mutational burden (TMB). Based on this signature, machine learning model predicted ICI response with an AUC of 0.71 in both validation and testing set. Remarkably, compared with previous well-established signatures, Stem.Sig achieved better predictive performance across multiple cancers. Moreover, we generated a gene list ranked by the average effect of each gene to enhance tumor immune response after genetic knockout across different CRISPR datasets. Then we matched Stem.Sig to this gene list and found Stem.Sig significantly enriched 3% top-ranked genes from the list (P = 0.03), including EMC3, BECN1, VPS35, PCBP2, VPS29, PSMF1, GCLC, KXD1, SPRR1B, PTMA, YBX1, CYP27B1, NACA, PPP1CA, TCEB2, PIGC, NR0B2, PEX13, SERF2, and ZBTB43, which were potential therapeutic targets.
CONCLUSIONS
We revealed a robust link between cancer stemness and immunotherapy resistance and developed a promising signature, Stem.Sig, which showed increased performance in comparison to other signatures regarding ICI response prediction. This signature could serve as a competitive tool for patient selection of immunotherapy. Meanwhile, our study potentially paves the way for overcoming immune resistance by targeting stemness-associated genes.
Identifiants
pubmed: 35488273
doi: 10.1186/s13073-022-01050-w
pii: 10.1186/s13073-022-01050-w
pmc: PMC9052621
doi:
Substances chimiques
Biomarkers, Tumor
0
Carrier Proteins
0
Intracellular Signaling Peptides and Proteins
0
KXD1 protein, human
0
PCBP2 protein, human
0
RNA-Binding Proteins
0
SERF2 protein, human
0
RNA
63231-63-0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
45Informations de copyright
© 2022. The Author(s).
Références
Front Immunol. 2021 Nov 05;12:758288
pubmed: 34804045
Cell. 2017 Dec 14;171(7):1611-1624.e24
pubmed: 29198524
Science. 2018 Apr 20;360(6386):331-335
pubmed: 29674595
Nature. 2018 Feb 22;554(7693):544-548
pubmed: 29443960
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9271-E9279
pubmed: 29078276
Science. 2018 Feb 16;359(6377):770-775
pubmed: 29301958
Nat Med. 2018 Mar;24(3):262-270
pubmed: 29431745
Nat Rev Clin Oncol. 2020 Apr;17(4):204-232
pubmed: 31792354
Cold Spring Harb Mol Case Stud. 2020 Apr 1;6(2):
pubmed: 32054662
Eur J Cancer. 2009 Jan;45(2):228-47
pubmed: 19097774
Cell. 2018 Apr 19;173(3):624-633.e8
pubmed: 29656892
Nat Commun. 2019 May 28;10(1):2352
pubmed: 31138793
Signal Transduct Target Ther. 2020 Feb 29;5(1):11
pubmed: 32296023
Cell Rep. 2021 Jan 5;34(1):108597
pubmed: 33406434
Cell. 2017 Nov 2;171(4):934-949.e16
pubmed: 29033130
Turk J Emerg Med. 2018 Aug 07;18(3):91-93
pubmed: 30191186
J Clin Invest. 2017 Aug 1;127(8):2930-2940
pubmed: 28650338
Science. 2015 Oct 9;350(6257):207-211
pubmed: 26359337
Biostatistics. 2007 Jan;8(1):118-27
pubmed: 16632515
J Clin Oncol. 2019 Feb 1;37(4):318-327
pubmed: 30557521
Nat Med. 2019 Aug;25(8):1251-1259
pubmed: 31359002
Brief Bioinform. 2021 Sep 2;22(5):
pubmed: 33839757
Science. 2017 Mar 31;355(6332):
pubmed: 28360267
J Clin Oncol. 2019 Apr 20;37(12):992-1000
pubmed: 30785829
Nature. 2020 Jan;577(7791):549-555
pubmed: 31942075
OMICS. 2012 May;16(5):284-7
pubmed: 22455463
Cell. 2018 Nov 1;175(4):984-997.e24
pubmed: 30388455
Nat Med. 2019 Dec;25(12):1916-1927
pubmed: 31792460
Mol Cancer Ther. 2012 Aug;11(8):1627-36
pubmed: 22844074
Cell. 2015 Jan 15;160(1-2):48-61
pubmed: 25594174
Pharmacol Ther. 2019 Nov;203:107395
pubmed: 31374225
Cancer Cell. 2019 Feb 11;35(2):238-255.e6
pubmed: 30753825
EMBO Mol Med. 2013 Mar;5(3):327-31
pubmed: 23495139
Bioinformatics. 2004 Dec 12;20(18):3710-5
pubmed: 15297299
Nat Commun. 2020 Oct 8;11(1):5084
pubmed: 33033253
Cancer Discov. 2019 Dec;9(12):1708-1719
pubmed: 31554641
Cancer Commun (Lond). 2021 Sep;41(9):803-829
pubmed: 34165252
N Engl J Med. 2012 Jun 28;366(26):2443-54
pubmed: 22658127
Cell. 2016 Mar 24;165(1):35-44
pubmed: 26997480
Nature. 2017 Aug 31;548(7669):537-542
pubmed: 28783722
Science. 2017 Jan 20;355(6322):
pubmed: 28104840
Nat Commun. 2020 Apr 3;11(1):1669
pubmed: 32245950
Science. 2020 Jan 24;367(6476):405-411
pubmed: 31974247
Brief Bioinform. 2021 Jul 20;22(4):
pubmed: 33212483
Nat Biotechnol. 2020 Jun;38(6):675-678
pubmed: 32444850
Cell Rep. 2017 Oct 31;21(5):1399-1410
pubmed: 29091775
Trends Cell Biol. 2018 Jul;28(7):551-559
pubmed: 29555207
Nature. 2016 Nov 10;539(7628):309-313
pubmed: 27806376
J Hematol Oncol. 2020 Mar 18;13(1):22
pubmed: 32188475
Cancer Cell. 2019 Oct 14;36(4):418-430.e6
pubmed: 31588021
Nat Commun. 2020 Jan 24;11(1):496
pubmed: 31980621
Nat Med. 2018 Sep;24(9):1449-1458
pubmed: 30013197
Cancer Discov. 2019 Apr;9(4):510-525
pubmed: 30622105
NPJ Genom Med. 2021 Feb 4;6(1):7
pubmed: 33542239
Nature. 2022 Jan;601(7894):623-629
pubmed: 34875674
Science. 2016 Apr 8;352(6282):227-31
pubmed: 26966191
Nat Med. 2018 Dec;24(12):1867-1876
pubmed: 30523328
Cancer Discov. 2020 Feb;10(2):232-253
pubmed: 31699795
Nature. 2017 Jul 27;547(7664):413-418
pubmed: 28723893
Cell. 2018 May 3;173(4):879-893.e13
pubmed: 29681456
Nucleic Acids Res. 2021 Jan 8;49(D1):D1420-D1430
pubmed: 33179754
Cancer Discov. 2012 May;2(5):401-4
pubmed: 22588877
Genome Med. 2022 Apr 29;14(1):45
pubmed: 35488273
Cell Rep. 2019 Sep 10;28(11):2784-2794.e5
pubmed: 31509742
PLoS Med. 2017 May 26;14(5):e1002309
pubmed: 28552987
Immunity. 2018 Apr 17;48(4):812-830.e14
pubmed: 29628290
Cancer Discov. 2021 Apr;11(4):838-857
pubmed: 33811120
Cancer Med. 2019 Jun;8(6):3072-3085
pubmed: 31033233
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):9020-9029
pubmed: 30996127
Cytokine Growth Factor Rev. 2015 Feb;26(1):1-6
pubmed: 24933439
PLoS One. 2018 Nov 1;13(11):e0206785
pubmed: 30383866
Nat Commun. 2018 Sep 24;9(1):3868
pubmed: 30250229
Cell. 2019 Aug 8;178(4):835-849.e21
pubmed: 31327527
Biom J. 2005 Aug;47(4):458-72
pubmed: 16161804
Nat Biotechnol. 2020 Mar;38(3):333-342
pubmed: 31932730
Genome Med. 2020 Feb 26;12(1):21
pubmed: 32102694
Sci Immunol. 2018 May 18;3(23):
pubmed: 29776993
Cell. 2020 Apr 16;181(2):442-459.e29
pubmed: 32302573
Semin Cancer Biol. 2020 Oct;65:140-154
pubmed: 31927131
Genome Biol. 2016 Dec 1;17(1):249
pubmed: 27908289
Bioinformatics. 2020 Jun 1;36(11):3585-3587
pubmed: 32105316
Cell Res. 2019 Sep;29(9):725-738
pubmed: 31273297
Nat Med. 2020 Jun;26(6):909-918
pubmed: 32472114
BMC Bioinformatics. 2013 Jan 16;14:7
pubmed: 23323831
Semin Cancer Biol. 2018 Dec;53:189-200
pubmed: 30261276
Nature. 2020 Oct;586(7827):120-126
pubmed: 32968282
Nature. 2019 Aug;572(7767):74-79
pubmed: 31341285
Genome Med. 2021 May 11;13(1):82
pubmed: 33975634
Stem Cell Reports. 2020 Feb 11;14(2):338-350
pubmed: 32004492
Exp Mol Med. 2018 Aug 7;50(8):1-14
pubmed: 30089861
Nat Med. 2018 Aug;24(8):1277-1289
pubmed: 29988129
Cancer Immunol Res. 2020 Nov;8(11):1365-1380
pubmed: 32917656
Sci Signal. 2013 Apr 02;6(269):pl1
pubmed: 23550210
Science. 2016 Apr 8;352(6282):189-96
pubmed: 27124452
Int J Mol Sci. 2020 Nov 18;21(22):
pubmed: 33217970
Genome Med. 2018 Jul 24;10(1):57
pubmed: 30041684
Cell Rep. 2019 May 7;27(6):1934-1947.e5
pubmed: 31067475
Immunity. 2019 May 21;50(5):1317-1334.e10
pubmed: 30979687
Nat Rev Cancer. 2021 Aug;21(8):526-536
pubmed: 34103704
J Immunother Cancer. 2020 Oct;8(2):
pubmed: 33115943
Nat Med. 2019 Mar;25(3):462-469
pubmed: 30742119
Cell. 2019 Jul 25;178(3):585-599.e15
pubmed: 31303383
BMC Med. 2021 Feb 2;19(1):26
pubmed: 33526018
Nat Med. 2018 Oct;24(10):1545-1549
pubmed: 30127394