The rice transcription factor Nhd1 regulates root growth and nitrogen uptake by activating nitrogen transporters.
Journal
Plant physiology
ISSN: 1532-2548
Titre abrégé: Plant Physiol
Pays: United States
ID NLM: 0401224
Informations de publication
Date de publication:
27 06 2022
27 06 2022
Historique:
received:
02
03
2022
accepted:
21
03
2022
pubmed:
6
5
2022
medline:
30
6
2022
entrez:
5
5
2022
Statut:
ppublish
Résumé
Plants adjust root architecture and nitrogen (N) transporter activity to meet the variable N demand, but their integrated regulatory mechanism remains unclear. We have previously reported that a floral factor in rice (Oryza sativa), N-mediated heading date-1 (Nhd1), regulates flowering time. Here, we show that Nhd1 can directly activate the transcription of the high-affinity ammonium (NH4+) transporter 1;3 (OsAMT1;3) and the dual affinity nitrate (NO3-) transporter 2.4 (OsNRT2.4). Knockout of Nhd1 inhibited root growth in the presence of NO3- or a low concentration of NH4+. Compared to the wild-type (WT), nhd1 and osamt1;3 mutants showed a similar decrease in root growth and N uptake under low NH4+ supply, while nhd1 and osnrt2.4 mutants showed comparable root inhibition and altered NO3- translocation in shoots. The defects of nhd1 mutants in NH4+ uptake and root growth response to various N supplies were restored by overexpression of OsAMT1;3 or OsNRT2.4. However, when grown in a paddy field with low N availability, nhd1 mutants accumulated more N and achieved a higher N uptake efficiency (NUpE) due to the delayed flowering time and prolonged growth period. Our findings reveal a molecular mechanism underlying the growth duration-dependent NUpE.
Identifiants
pubmed: 35512346
pii: 6571161
doi: 10.1093/plphys/kiac178
pmc: PMC9237666
doi:
Substances chimiques
Ammonium Compounds
0
Anion Transport Proteins
0
Nitrates
0
Plant Proteins
0
Transcription Factors
0
Nitrogen
N762921K75
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1608-1624Informations de copyright
© American Society of Plant Biologists 2022. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Références
Plant J. 2006 Nov;48(4):522-34
pubmed: 17026539
Nat Rev Genet. 2012 Sep;13(9):627-39
pubmed: 22898651
J Exp Bot. 2017 May 1;68(10):2603-2609
pubmed: 28369493
Plant Physiol. 2012 Dec;160(4):2052-63
pubmed: 23093362
Plant Methods. 2013 Dec 20;9(1):48
pubmed: 24359672
New Phytol. 2016 Nov;212(3):646-656
pubmed: 27292630
J Exp Bot. 2015 Jan;66(1):317-31
pubmed: 25332358
New Phytol. 2020 Apr;226(1):156-169
pubmed: 31758804
J Exp Bot. 2018 Feb 23;69(5):1095-1107
pubmed: 29385597
J Exp Bot. 2016 Jan;67(1):47-60
pubmed: 26428061
Science. 2008 Dec 19;322(5909):1832-5
pubmed: 19095940
Plant Physiol. 2019 Feb;179(2):656-670
pubmed: 30567970
Plant Cell Physiol. 2003 Jul;44(7):726-34
pubmed: 12881500
Curr Opin Plant Biol. 2017 Oct;39:57-65
pubmed: 28614749
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16649-16659
pubmed: 32586957
Plant Cell Environ. 2020 Jan;43(1):76-86
pubmed: 31691316
Plant J. 2020 Jul;103(1):7-20
pubmed: 32369636
J Exp Bot. 2020 Jul 25;71(15):4393-4404
pubmed: 31970412
Plant Physiol. 2020 May;183(1):289-303
pubmed: 32071150
Plant Physiol. 2013 Sep;163(1):161-79
pubmed: 23852440
J Exp Bot. 2002 Apr;53(370):789-99
pubmed: 11912222
Plant J. 2020 Jul;103(1):395-411
pubmed: 32159895
Physiol Plant. 2018 Feb;162(2):251-260
pubmed: 29095491
Annu Rev Plant Biol. 2018 Apr 29;69:85-122
pubmed: 29570365
Development. 1996 Nov;122(11):3549-56
pubmed: 8951070
New Phytol. 2018 Jan;217(1):35-53
pubmed: 29120059
Plant Physiol. 2007 Mar;143(3):1306-13
pubmed: 17259286
Curr Biol. 2021 Feb 22;31(4):671-683.e5
pubmed: 33278354
New Phytol. 2021 Nov;232(4):1778-1792
pubmed: 34392543
J Exp Bot. 2017 May 1;68(10):2463-2475
pubmed: 28158856
Plant Cell. 2010 Nov;22(11):3621-33
pubmed: 21119058
New Phytol. 2000 Mar;145(3):471-476
pubmed: 33862905
Int J Mol Sci. 2020 May 18;21(10):
pubmed: 32443561
Plant Physiol. 1993 Dec;103(4):1249-1258
pubmed: 12232017
Curr Biol. 2016 Mar 7;26(5):640-6
pubmed: 26877080
Curr Biol. 2017 Sep 11;27(17):R973-R978
pubmed: 28898670
J Exp Bot. 2004 Jun;55(401):1293-305
pubmed: 15133056
Plant Physiol. 2008 Apr;146(4):2036-53
pubmed: 18305209
Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4939-44
pubmed: 18344319
Trends Plant Sci. 2013 Oct;18(10):575-83
pubmed: 23790253
J Genet Genomics. 2016 Nov 20;43(11):639-649
pubmed: 27889499
Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19206-11
pubmed: 17148611
Plant Sci. 2016 Jul;248:92-101
pubmed: 27181951
J Integr Plant Biol. 2021 Aug;63(8):1537-1554
pubmed: 34009694
J Exp Bot. 2007;58(11):2811-25
pubmed: 17615410
Plant Cell Environ. 2008 Jan;31(1):73-85
pubmed: 17944815
Plant Cell. 2007 Aug;19(8):2636-52
pubmed: 17693533
Plant Cell Environ. 2009 Sep;32(9):1272-83
pubmed: 19558408
Curr Opin Plant Biol. 2014 Feb;17:110-5
pubmed: 24507502
Plant Cell Environ. 2010 Aug 1;33(8):1369-82
pubmed: 20374533
PLoS One. 2013;8(4):e61031
pubmed: 23577185
Plant Physiol. 2011 Jul;156(3):1116-30
pubmed: 21346170
J Exp Bot. 2011 Apr;62(7):2319-32
pubmed: 21220781
Nat Commun. 2019 Nov 21;10(1):5279
pubmed: 31754193
Plant J. 2017 May;90(4):708-719
pubmed: 27995671
Plant Cell Environ. 2011 Jun;34(6):877-894
pubmed: 21332506
Ann Bot. 2005 Sep;96(4):639-46
pubmed: 16024557
Plant Physiol. 2010 Feb;152(2):808-20
pubmed: 20007447
J Exp Bot. 2007;58(9):2319-27
pubmed: 17350935
Annu Rev Plant Biol. 2012;63:153-82
pubmed: 22224450
New Phytol. 2021 May;230(3):943-956
pubmed: 33341945
PLoS Biol. 2018 Oct 24;16(10):e2006024
pubmed: 30356235