Purification and Analysis of Nucleotides and Nucleosides from Plants.

Liquid chromatography Mass spectrometry Metabolomics Plant nucleotide metabolism Polar metabolomics Weak anion-exchange solid phase extraction

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2022
Historique:
entrez: 18 5 2022
pubmed: 19 5 2022
medline: 21 5 2022
Statut: ppublish

Résumé

This protocol describes necessary steps to isolate and quantify nucleotides and nucleosides from plant samples. Proper sample preparation in combination with liquid chromatography coupled to mass spectrometry enables the sensitive detection and quantification of metabolites of low abundance. Utilizing a liquid-liquid extraction in combination with a weak anion-exchange solid phase extraction enables the separation of negatively charged molecules from uncharged metabolites or cations.

Identifiants

pubmed: 35585317
doi: 10.1007/978-1-0716-2176-9_11
doi:

Substances chimiques

Nucleosides 0
Nucleotides 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

145-155

Informations de copyright

© 2022. Springer Science+Business Media, LLC, part of Springer Nature.

Références

Straube H, Witte C-P, Herde M (2021) Analysis of nucleosides and nucleotides in plants: an update on sample preparation and LC-MS techniques. Cell 10:689. https://doi.org/10.3390/cells10030689
doi: 10.3390/cells10030689
Yoo S-C, Cho S-H, Sugimoto H et al (2009) Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol 150:388–401. https://doi.org/10.1104/pp.109.136648
doi: 10.1104/pp.109.136648 pubmed: 19297585 pmcid: 2675711
Garton S, Knight H, Warren GJ et al (2007) Crinkled leaves 8 - a mutation in the large subunit of ribonucleotide reductase leads to defects in leaf development and chloroplast division in Arabidopsis thaliana. Plant J 50:118–127. https://doi.org/10.1111/j.1365-313X.2007.03035.x
doi: 10.1111/j.1365-313X.2007.03035.x pubmed: 17346262
Wang C, Liu Z (2006) Arabidopsis ribonucleotide reductases are critical for cell cycle progression, DNA damage repair, and plant development. Plant Cell 18:350–365. https://doi.org/10.1105/tpc.105.037044
doi: 10.1105/tpc.105.037044 pubmed: 16399800 pmcid: 1356544
Nygaard P (1972) Deoxyribonucleotide pools in plant tissue cultures. Physiol Plant 26:29–33. https://doi.org/10.1111/j.1399-3054.1972.tb03541.x
doi: 10.1111/j.1399-3054.1972.tb03541.x
Dutta I, Dutta PK, Smith DW et al (1991) High-performance liquid chromatography of deoxyribonucleoside di- and triphosphates in tomato roots. J Chromatogr A 536:237–243. https://doi.org/10.1016/S0021-9673(01)89255-4
doi: 10.1016/S0021-9673(01)89255-4
Chen M, Herde M, Witte C-P (2016) Of the nine cytidine deaminase-like genes in Arabidopsis, eight are pseudogenes and only one is required to maintain pyrimidine homeostasis in vivo. Plant Physiol 171:799–809. https://doi.org/10.1104/pp.15.02031
doi: 10.1104/pp.15.02031 pubmed: 27208239 pmcid: 4902590
Dahncke K, Witte C-P (2013) Plant purine nucleoside catabolism employs a guanosine deaminase required for the generation of xanthosine in Arabidopsis. Plant Cell 25:4101–4109. https://doi.org/10.1105/tpc.113.117184
doi: 10.1105/tpc.113.117184 pubmed: 24130159 pmcid: 3877791
Kopecná M, Blaschke H, Kopecny D et al (2013) Structure and function of nucleoside hydrolases from Physcomitrella patens and maize catalyzing the hydrolysis of purine, pyrimidine, and cytokinin ribosides. Plant Physiol 163:1568–1583. https://doi.org/10.1104/pp.113.228775
doi: 10.1104/pp.113.228775 pubmed: 24170203 pmcid: 3850210
Straube H, Niehaus M, Zwittian S et al (2021) Enhanced nucleotide analysis enables the quantification of deoxynucleotides in plants and algae revealing connections between nucleoside and deoxynucleoside metabolism. Plant Cell 33:270–289. https://doi.org/10.1093/plcell/koaa028
doi: 10.1093/plcell/koaa028 pubmed: 33793855
Bieleski R-L (1964) The problem of halting enzyme action when extracting plant tissues. Anal Biochem 9:431–442. https://doi.org/10.1016/0003-2697(64)90204-0
doi: 10.1016/0003-2697(64)90204-0 pubmed: 14239480

Auteurs

Henryk Straube (H)

Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, Germany.

Marco Herde (M)

Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, Germany. mherde@pflern.uni-hannover.de.

Articles similaires

Humans Chromatography, High Pressure Liquid Acetaminophen COVID-19 SARS-CoV-2
Humans Pisum sativum Breast Neoplasms Tandem Mass Spectrometry Plant Extracts
Humans Breast Neoplasms Female Mass Spectrometry Adipose Tissue
Soil Charcoal Nutrients Manure Nitrogen

Classifications MeSH