Synthesis, characterization, molecular docking, dynamics simulations, and
ADME prediction
anticholinesterase activity
hydrazone
molecular docking
molecular dynamics
thiazole
Journal
Zeitschrift fur Naturforschung. C, Journal of biosciences
ISSN: 1865-7125
Titre abrégé: Z Naturforsch C J Biosci
Pays: Germany
ID NLM: 8912155
Informations de publication
Date de publication:
25 Nov 2022
25 Nov 2022
Historique:
received:
13
12
2021
accepted:
21
02
2022
pubmed:
23
5
2022
medline:
4
11
2022
entrez:
22
5
2022
Statut:
epublish
Résumé
In this study, two novel series of thiazolylhydrazone derivatives containing 4-ethylpiperazine (
Identifiants
pubmed: 35599239
pii: znc-2021-0316
doi: 10.1515/znc-2021-0316
doi:
Substances chimiques
Butyrylcholinesterase
EC 3.1.1.8
Acetylcholinesterase
EC 3.1.1.7
Cholinesterase Inhibitors
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
447-457Informations de copyright
© 2022 Walter de Gruyter GmbH, Berlin/Boston.
Références
Ozten, O, Kurt, BZ, Sonmez, F, Dogan, B, Durdagi, S. Synthesis, molecular docking and molecular dynamics studies of novel tacrine-carbamate derivatives as potent cholinesterase inhibitors. Bioorg Chem 2021;115:105225. https://doi.org/10.1016/j.bioorg.2021.105225.
Wu, J, Kou, X, Ju, H, Zhang, H, Yang, A, Shen, R. Design, synthesis and biological evaluation of naringenin carbamate derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2021;49:128316. https://doi.org/10.1016/j.bmcl.2021.128316.
Tramutola, A, Lanzillotta, C, Perluigi, M, Butterfield, DA. Oxidative stress, protein modification and Alzheimer disease. Brain Res Bull 2017;133:88–96. https://doi.org/10.1016/j.brainresbull.2016.06.005.
Hampel, H, Mesulam, MM, Cuello, AC, Khachaturian, AS, Vergallo, A, Farlow, MR, et al.. Revisiting the cholinergic hypothesis in Alzheimer’s disease: emerging evidence from translational and clinical research. J Prev Alzheimer’s Dis 2019;6:2–15.
Li, Y, Jiao, Q, Xu, H, Du, X, Shi, L, Jia, F, et al.. Biometal dyshomeostasis and toxic metal accumulations in the development of Alzheimer’s disease. Front Mol Neurosci 2017;10:339. https://doi.org/10.3389/fnmol.2017.00339.
Bagyinszky, E, Van Giau, V, Shim, K, Suk, K, An, SSA, Kim, S. Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J Neurol Sci 2017;376:242–54. https://doi.org/10.1016/j.jns.2017.03.031.
Iqbal, K, Liu, F, Gong, CX. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 2016;12:15–27. https://doi.org/10.1038/nrneurol.2015.225.
Cenini, G, Sultana, R, Memo, M, Butterfield, DA. Elevated levels of pro‐apoptotic p53 and its oxidative modification by the lipid peroxidation product, HNE, in brain from subjects with amnestic mild cognitive impairment and Alzheimer’s disease. J Cell Mol Med 2008;12:987–94. https://doi.org/10.1111/j.1582-4934.2008.00163.x.
LaFerla, FM, Green, KN, Oddo, S. Intracellular amyloid-β in Alzheimer’s disease. Nat Rev Neurosci 2007;8:499–509. https://doi.org/10.1038/nrn2168.
Shaikh, S, Dhavan, P, Uparkar, J, Singh, P, Vaidya, SP, Jadhav, BL, et al.. Synthesis, characterization, in vitro cholinesterase and hRBCs hemolysis assay and computational evaluation of novel 2,3,4,5-tetrahydrobenzothiazepine appended α-aminophosphonates. Bioorg Chem 2021;116:105397. https://doi.org/10.1016/j.bioorg.2021.105397.
Pashaei, H, Rouhani, A, Nejabat, M, Hadizadeh, F, Mirzaei, S, Naderi, H, et al.. Synthesis and molecular dynamic simulation studies of novel N-(1-benzylpiperidin-4-yl) quinoline-4-carboxamides as potential acetylcholinesterase inhibitors. J Mol Struct 2021;1244:130919. https://doi.org/10.1016/j.molstruc.2021.130919.
Coşar, ED, Dincel, ED, Demiray, S, Sucularlı, E, Tüccaroğlu, E, Özsoy, N, et al.. Anticholinesterase activities of novel indole-based hydrazide-hydrazone derivatives: design, synthesis, biological evaluation, molecular docking study and in silico ADME prediction. J Mol Struct 2022;1247:131398.
Li, Q, Yang, H, Chen, Y, Sun, H. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Eur J Med Chem 2017;132:294–309. https://doi.org/10.1016/j.ejmech.2017.03.062.
Makhaeva, GF, Boltneva, NP, Lushchekina, SV, Serebryakova, OG, Stupina, TS, Terentiev, AA, et al.. Synthesis, molecular docking and biological evaluation of N,N-disubstituted 2-aminothiazolines as a new class of butyrylcholinesterase and carboxylesterase inhibitors. Bioorg Med Chem 2016;24:1050–62. https://doi.org/10.1016/j.bmc.2016.01.031.
Xu, R, Xiao, G, Li, Y, Liu, H, Song, Q, Zhang, X, et al.. Multifunctional 5,6-dimethoxybenzo[d]isothiazol-3(2H)-one-N-alkylbenzylamine derivatives with acetylcholinesterase, monoamine oxidases and β-amyloid aggregation inhibitory activities as potential agents against Alzheimer’s disease. Bioorg Med Chem 2018;26:1885–95. https://doi.org/10.1016/j.bmc.2018.02.037.
Matsunaga, Y, Tanaka, T, Yoshinaga, K, Ueki, S, Hori, Y, Eta, R, et al.. Acotiamide hydrochloride (Z-338), a new selective acetylcholinesterase inhibitor, enhances gastric motility without prolonging QT interval in dogs: comparison with cisapride, itopride, and mosapride. J Pharmacol Exp Therapeut 2011;336:791–800. https://doi.org/10.1124/jpet.110.174847.
Sang, Z, Qiang, X, Li, Y, Xu, R, Cao, Z, Song, Q, et al.. Design, synthesis and evaluation of scutellarein-O-acetamidoalkylbenzylamines as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem 2017;135:307–23. https://doi.org/10.1016/j.ejmech.2017.04.054.
Sang, Z, Qiang, X, Li, Y, Yuan, W, Liu, Q, Shi, Y, et al.. Design, synthesis and evaluation of scutellarein-O-alkylamines as multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem 2015;94:348–66. https://doi.org/10.1016/j.ejmech.2015.02.063.
Ellman, GL, Courtney, KD, Andres, V, Featherstone, RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9.
Blois, MS. Antioxidant determinations by the use of a stable free radical. Nature 1958;181:1199–200. https://doi.org/10.1038/1811199a0.
Noshadi, B, Ercetin, T, Luise, C, Yuksel, MY, Sippl, W, Sahin, MF, et al.. Synthesis, characterization, molecular docking, and biological activities of some natural and synthetic urolithin analogs. Chem Biodivers 2020;17: e2000197. https://doi.org/10.1002/cbdv.202000197.
Abraham, MJ, Murtola, T, Schulz, R, Páll, S, Smith, JC, Hess, B, et al.. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015;1:19–25. https://doi.org/10.1016/j.softx.2015.06.001.
Schüttelkopf, AW, Van Aalten, DM. PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D Biol Crystallogr 2004;60:1355–63.
Oostenbrink, C, Villa, A, Mark, AE, Van Gunsteren, WF. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force‐field parameter sets 53A5 and 53A6. J Chem Inf Model 2004;25:1656–76. https://doi.org/10.1002/jcc.20090.
Kumari, R, Kumar, R, Open Source Drug Discovery Consortium, Lynn, A. g_mmpbsa·a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 2014;54:1951–62. https://doi.org/10.1021/ci500020m.
Daina, A, Michielin, O, Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017;7:1–13. https://doi.org/10.1038/srep42717.