Catalytic Atroposelective Electrophilic Amination of Indoles.

Amination Atroposelectivity Conjugation C−N Axis Heterocycles

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
01 08 2022
Historique:
received: 08 04 2022
pubmed: 26 5 2022
medline: 27 7 2022
entrez: 25 5 2022
Statut: ppublish

Résumé

Reported here is the first catalytic atroposelective electrophilic amination of indoles, which delivers functionalized atropochiral N-sulfonyl-3-arylaminoindoles with excellent optical purity. This reaction was furnished by 1,6-nucleophilic addition to p-quinone diimines. Control experiments suggest an ionic mechanism that differs from the radical addition pathway commonly proposed for 1,6-addition to quinones. The origin of 1,6-addition selectivity was investigated through computational studies. Preliminary studies show that the obtained 3-aminoindoles atropisomers exhibit anticancer activities. This method is valuable with respect to enlarging the toolbox for atropochiral amine derivatives.

Identifiants

pubmed: 35612900
doi: 10.1002/anie.202205159
doi:

Substances chimiques

Amines 0
Indoles 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202205159

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

 
A. J. Kochanowska-Karamyan, M. T. Hamann, Chem. Rev. 2010, 110, 4489-4497;
Y. Wan, Y. Li, C. Yan, M. Yan, Z. Tang, Eur. J. Med. Chem. 2019, 183, 111691;
I. Cho, S. K. Park, B. Kang, J. W. Chung, J. H. Kim, K. Cho, S. Y. Park, Adv. Funct. Mater. 2016, 26, 2966-2973.
 
C. Zheng, S.-L. You, Acc. Chem. Res. 2020, 53, 974-987;
X. M. Xu, J. Z. Li, Z. L. Wang, Chin. J. Org. Chem. 2020, 40, 886-898;
J. Qin, H. Zuo, Y. Ni, Q. Yu, F. Zhong, ACS Sustainable Chem. Eng. 2020, 8, 12342-12347;
M.-S. Tu, K.-W. Chen, P. Wu, Y.-C. Zhang, X.-Q. Liu, F. Shi, Org. Chem. Front. 2021, 8, 2643-2672.
 
R. Dalpozzo, Chem. Soc. Rev. 2015, 44, 742-778;
J.-B. Chen, Y.-X. Jia, Org. Biomol. Chem. 2017, 15, 3550-3567;
Y.-C. Zhang, F. Jiang, F. Shi, Acc. Chem. Res. 2020, 53, 425-446.
For recent reviewers on catalytic atroposelective synthesis, see:
Y.-B. Wang, B. Tan, Acc. Chem. Res. 2018, 51, 534-547;
J. K. Cheng, S.-H. Xiang, S. Li, L. Ye, B. Tan, Chem. Rev. 2021, 121, 4805-4902;
J. A. Carmona, C. Rodríguez-Franco, R. Fernández, V. Hornillos, J. M. Lassaletta, Chem. Soc. Rev. 2021, 50, 2968-2983.
For recent studies on catalytic synthesis of indole-based atropisomers, see:
H.-H. Zhang, C.-S. Wang, C. Li, G.-J. Mei, Y. Li, F. Shi, Angew. Chem. Int. Ed. 2017, 56, 116-121;
Angew. Chem. 2017, 129, 122-127;
L.-W. Qi, J.-H. Mao, J. Zhang, B. Tan, Nat. Chem. 2018, 10, 58-64;
M. Tian, D. Bai, G. Zheng, J. Chang, X. Li, J. Am. Chem. Soc. 2019, 141, 9527-9532;
F. Jiang, K.-W. Chen, P. Wu, Y.-C. Zhang, Y. Jiao, F. Shi, Angew. Chem. Int. Ed. 2019, 58, 15104-15110;
Angew. Chem. 2019, 131, 15248-15254;
C. Ma, F. Jiang, F.-T. Sheng, Y. Jiao, G.-J. Mei, F. Shi, Angew. Chem. Int. Ed. 2019, 58, 3014-3020;
Angew. Chem. 2019, 131, 3046-3052;
S. Zhu, Y.-H. Chen, Y.-B. Wang, P. Yu, S.-Y. Li, S.-H. Xiang, J.-Q. Wang, J. Xiao, B. Tan, Nat. Commun. 2019, 10, 4268;
L. Peng, K. Li, C. Xie, S. Li, D. Xu, W. Qin, H. Yan, Angew. Chem. Int. Ed. 2019, 58, 17199-17204;
Angew. Chem. 2019, 131, 17359-17364;
X.-L. He, H.-R. Zhao, X. Song, B. Jiang, W. Du, Y.-C. Chen, ACS Catal. 2019, 9, 4374-4381;
W.-Y. Ding, P. Yu, Q.-J. An, K. L. Bay, S.-H. Xiang, S. Li, Y. Chen, K. N. Houk, B. Tan, Chem 2020, 6, 2046-2059;
Y.-H. Chen, H.-H. Li, X. Zhang, S.-H. Xiang, S. Li, B. Tan, Angew. Chem. Int. Ed. 2020, 59, 11374-11378;
Angew. Chem. 2020, 132, 11470-11474;
Y.-P. He, H. Wu, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2020, 59, 2105-2109;
Angew. Chem. 2020, 132, 2121-2125;
A. Kim, A. Kim, S. Park, S. Kim, H. Jo, K. M. Ok, S. K. Lee, J. Song, Y. Kwon, Angew. Chem. Int. Ed. 2021, 60, 12279-12283;
Angew. Chem. 2021, 133, 12387-12391;
L. Sun, H. Chen, B. Liu, J. Chang, L. Kong, F. Wang, Y. Lan, X. Li, Angew. Chem. Int. Ed. 2021, 60, 8391-8395;
Angew. Chem. 2021, 133, 8472-8476.
 
W. Xia, Q.-J. An, S.-H. Xiang, S. Li, Y.-B. Wang, B. Tan, Angew. Chem. Int. Ed. 2020, 59, 6775-6779;
Angew. Chem. 2020, 132, 6841-6845;
J. Frey, A. Malekafzali, I. Delso, S. Choppin, F. Colobert, J. Wencel-Delord, Angew. Chem. Int. Ed. 2020, 59, 8844-8848;
Angew. Chem. 2020, 132, 8929-8933;
Q. Ren, T. Cao, C. He, M. Yang, H. Liu, L. Wang, ACS Catal. 2021, 11, 6135-6140.
 
I. Takahashi, Y. Suzuki, O. Kitagawa, Org. Prep. Proced. Int. 2014, 46, 1-23;
Z. Li, S. Yu, Sci. Sin. Chim. 2020, 50, 509-525;
O. Kitagawa, Acc. Chem. Res. 2021, 54, 719-730;
P. Rodríguez-Salamanca, R. Fernández, V. Hornillos, J. M. Lassaletta, Chem. Eur. J. 2022, 28, e202104.
 
S. Brandes, M. Bella, A. Kjaersgaard, K. A. Jørgensen, Angew. Chem. Int. Ed. 2006, 45, 1147-1151;
Angew. Chem. 2006, 118, 1165-1169;
H.-Y. Bai, F.-X. Tan, T.-Q. Liu, G.-D. Zhu, J.-M. Tian, T.-M. Ding, Z.-M. Chen, S.-Y. Zhang, Nat. Commun. 2019, 10, 3063;
D. Wang, Q. Jiang, X. Yang, Chem. Commun. 2020, 56, 6201-6204.
G. X. Ortiz, Jr., B. N. Hemric, Q. Wang, Org. Lett. 2017, 19, 1314-1317.
 
M. M. Heravi, Z. Kheilkordi, V. Zadsirjan, M. Heydari, M. Malmir, J. Organomet. Chem. 2018, 861, 17-104;
R. Dorel, C. P. Grugel, A. M. Haydl, Angew. Chem. Int. Ed. 2019, 58, 17118-17129;
Angew. Chem. 2019, 131, 17276-17287.
 
N. A. Romero, K. A. Margrey, N. E. Tay, D. A. Nicewicz, Science 2015, 349, 1326-1330;
K. A. Margrey, J. B. McManus, S. Bonazzi, F. Zecri, D. A. Nicewicz, J. Am. Chem. Soc. 2017, 139, 11288-11299;
N. Sauermann, R. Mei, L. Ackermann, Angew. Chem. Int. Ed. 2018, 57, 5090-5094;
Angew. Chem. 2018, 130, 5184-5188;
Q.-L. Yang, X.-Y. Wang, J.-Y. Lu, L.-P. Zhang, P. Fang, T.-S. Mei, J. Am. Chem. Soc. 2018, 140, 11487-11494;
P. Feng, G. Ma, X. Chen, X. Wu, L. Lin, P. Liu, T. Chen, Angew. Chem. Int. Ed. 2019, 58, 8400-8404;
Angew. Chem. 2019, 131, 8488-8492;
L. Zhang, L. Liardet, J. Luo, D. Ren, M. Gratzel, X. Hu, Nat. Catal. 2019, 2, 366-373;
A. Ruffoni, F. Julia, T. D. Svejstrup, A. J. McMillan, J. J. Douglas, D. Leonori, Nat. Chem. 2019, 11, 426-433.
 
S.-L. Li, C. Yang, Q. Wu, H.-L. Zheng, X. Li, J.-P. Cheng, J. Am. Chem. Soc. 2018, 140, 12836-12843;
H. Li, X. Yan, J. Zhang, W. Guo, J. Jiang, J. Wang, Angew. Chem. Int. Ed. 2019, 58, 6732-6736;
Angew. Chem. 2019, 131, 6804-6808;
L. Wang, J. Zhong, X. Lin, Angew. Chem. Int. Ed. 2019, 58, 15824-15828;
Angew. Chem. 2019, 131, 15971-15975;
S. D. Vaidya, S. T. Toenjes, N. Yamamoto, S. M. Maddox, J. L. Gustafson, J. Am. Chem. Soc. 2020, 142, 2198-2203;
T. Li, C. Mou, P. Qi, X. Peng, S. Jiang, G. Hao, W. Xue, S. Yang, L. Hao, Y. R. Chi, Angew. Chem. Int. Ed. 2021, 60, 9362-9367;
Angew. Chem. 2021, 133, 9448-9453;
Z.-S. Liu, P.-P. Xie, Y. Hua, C. Wu, Y. Ma, J. Chen, H.-G. Cheng, X. Hong, Q. Zhou, Chem 2021, 7, 1917-1932;
R. Mi, H. Chen, X. Zhou, N. Li, D. Ji, F. Wang, Y. Lan, X. Li, Angew. Chem. Int. Ed. 2022, 61, e202111860;
Angew. Chem. 2022, 134, e202111860.
 
V. Nair, R. S. Menon, A. T. Bijub, K. G. Abhilashc, Chem. Soc. Rev. 2012, 41, 1050-1059;
X. Zhang, Y.-H. Chen, B. Tan, Tetrahedron Lett. 2018, 59, 473-486.
 
L. Liao, C. Shu, M. Zhang, Y. Liao, X. Hu, Y. Zhang, Z. Wu, W. Yuan, X. Zhang, Angew. Chem. Int. Ed. 2014, 53, 10471-10475;
Angew. Chem. 2014, 126, 10639-10643;
Y.-H. Chen, D.-J. Cheng, J. Zhang, Y. Wang, X.-Y. Liu, B. Tan, J. Am. Chem. Soc. 2015, 137, 15062-15065;
J.-Z. Wang, J. Zhou, C. Xu, H. Sun, L. Kürti, Q.-L. Xu, J. Am. Chem. Soc. 2016, 138, 5202-5205;
M. Moliterno, R. Cari, A. Puglisi, A. Antenucci, C. Sperio, E. Moretti, A. Di Sabato, R. Salvio, M. Bella, Angew. Chem. Int. Ed. 2016, 55, 6525-6529;
Angew. Chem. 2016, 128, 6635-6639;
Y.-H. Chen, L.-W. Qi, F. Fang, B. Tan, Angew. Chem. Int. Ed. 2017, 56, 16308-16312;
Angew. Chem. 2017, 129, 16526-16530;
C. Xu, H. Zheng, B. Hu, X. Liu, L. Lin, X. Feng, Chem. Commun. 2017, 53, 9741-9744;
Q.-J. Liu, J. Zhu, X.-Y. Song, L. Wang, S. R. Wang, Y. Tang, Angew. Chem. Int. Ed. 2018, 57, 3810-3814;
Angew. Chem. 2018, 130, 3872-3876;
S. N. Reddy, V. R. Reddy, S. Dinda, J. B. Nanubolu, R. Chra, Org. Lett. 2018, 20, 2572-2575;
W. Luo, Z. Sun, E. H. N. Ferno, V. N. Nesterov, T. R. Cundari, H. Wang, Chem. Sci. 2020, 11, 9386-9394;
G. Coombs, M. H. Sak, S. J. Miller, Angew. Chem. Int. Ed. 2020, 59, 2875-2880;
Angew. Chem. 2020, 132, 2897-2902;
W.-Y. Ma, C. Gelis, D. Bouchet, P. Retailleau, X. Moreau, L. Neuville, G. Masson, Org. Lett. 2021, 23, 442-448.
 
E. Kumli, F. Montermini, P. Renaud, Org. Lett. 2006, 8, 5861-5864;
B. Xiong, R. Shen, M. Goto, S.-F. Yin, L.-B. Han, Chem. Eur. J. 2012, 18, 16902-16910;
X. Guo, H. Mayr, J. Am. Chem. Soc. 2014, 136, 11499-11512;
S. A. Konovalova, A. P. Avdeenko, A. A. Santalova, G. V. Palamarchuk, V. V. D'yakonenko, O. V. Shishkin, Russ. J. Org. Chem. 2015, 51, 42-50;
G. Song, Z. Zheng, Y. Wang, X. Yu, Org. Lett. 2016, 18, 6002-6005.
 
Y. Huang, Y. Li, P.-H. Leung, T. Hayashi, J. Am. Chem. Soc. 2014, 136, 4865-4868;
G. A. Shevchenko, B. Oppelaar, B. List, Angew. Chem. Int. Ed. 2018, 57, 10756-10759;
Angew. Chem. 2018, 130, 10916-10919.
During the peer-review process of our manuscript, Liao and co-workers disclosed copper-catalyzed 1,6-addition of indoles and other heteroarenes to QDI in a racemate fashion, see: We. Lan, F. Liu, J. Hu, J. Zhu, S. Hu, J.-P. Wan, L. Liao, J. Org. Chem. 2022, 87, 5592-5602.
Deposition Number 1974887 (for 3af) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
R. Adams, A. S. Nagarkatti, J. Am. Chem. Soc. 1950, 72, 4601-4606.
 
Q. Yu, Y. Fu, J. Huang, J. Qin, H. Zuo, Y. Wu, F. Zhong, ACS Catal. 2019, 9, 7285-7291;
H. Zuo, J. Qin, W. Zhang, M. A. Bashir, Q. Yu, W. Zhao, G. Wu, F. Zhong, Org. Lett. 2020, 22, 6911-6916.
 
J.-X. Zhang, F. K. Sheong, Z. Lin, Chem. Eur. J. 2018, 24, 9639-9650;
J.-X. Zhang, F. K. Sheong, Z. Lin, WIREs Comput. Mol. Sci. 2020, 10, e1469.
 
W.-J. van Zeist, F. M. Bickelhaupt, Org. Biomol. Chem. 2010, 8, 3118-3127;
I. Fernández, F. M. Bickelhaupt, Chem. Soc. Rev. 2014, 43, 4953-4967.
 
K. D. Mane, A. Mukherjee, G. K. Das, G. Suryavanshi, J. Org. Chem. 2022, 87, 5097-5112.
 
M. Giambiagi, M. S. Giambiagi, K. C. Mundim, Struct. Chem. 1990, 1, 423;
M. Giambiagi, M. S. Giambiagi, C. D. S. Silva, A. P. Figueiredo, Phys. Chem. Chem. Phys. 2000, 2, 3381-3392.
 
J. Klein, P. Fleurat-Lessard, J. Pilme, J. Comput. Chem. 2021, 42, 840-854;
H. Huang, L. Liu, J. Wang, Y. Zhou, H. Hu, X. Ye, G. Liu, Z. Xu, H. Xu, W. Yang, Y. Wang, Y. Peng, P. Yang, J. Sun, P. Yan, X. Cao, B. Tang, Chem. Sci. 2022, 13, 3129-3139.

Auteurs

Jingyang Qin (J)

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China.

Tong Zhou (T)

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China.

Tai-Ping Zhou (TP)

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China.

Langyu Tang (L)

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China.

Honghua Zuo (H)

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China.

Huaibin Yu (H)

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China.

Guojiao Wu (G)

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China.

Yuzhou Wu (Y)

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China.

Rong-Zhen Liao (RZ)

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China.

Fangrui Zhong (F)

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China.

Articles similaires

Osteosarcoma Animals Glutathione Oxidation-Reduction Mice
Peroxynitrous Acid Animals Escherichia coli Immunotherapy Mice
Animals Male Mice, Inbred C57BL Mice Bleomycin
Colorimetry Captopril Humans Alloys Limit of Detection

Classifications MeSH