Catalytic Atroposelective Electrophilic Amination of Indoles.
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
01 08 2022
01 08 2022
Historique:
received:
08
04
2022
pubmed:
26
5
2022
medline:
27
7
2022
entrez:
25
5
2022
Statut:
ppublish
Résumé
Reported here is the first catalytic atroposelective electrophilic amination of indoles, which delivers functionalized atropochiral N-sulfonyl-3-arylaminoindoles with excellent optical purity. This reaction was furnished by 1,6-nucleophilic addition to p-quinone diimines. Control experiments suggest an ionic mechanism that differs from the radical addition pathway commonly proposed for 1,6-addition to quinones. The origin of 1,6-addition selectivity was investigated through computational studies. Preliminary studies show that the obtained 3-aminoindoles atropisomers exhibit anticancer activities. This method is valuable with respect to enlarging the toolbox for atropochiral amine derivatives.
Identifiants
pubmed: 35612900
doi: 10.1002/anie.202205159
doi:
Substances chimiques
Amines
0
Indoles
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202205159Informations de copyright
© 2022 Wiley-VCH GmbH.
Références
A. J. Kochanowska-Karamyan, M. T. Hamann, Chem. Rev. 2010, 110, 4489-4497;
Y. Wan, Y. Li, C. Yan, M. Yan, Z. Tang, Eur. J. Med. Chem. 2019, 183, 111691;
I. Cho, S. K. Park, B. Kang, J. W. Chung, J. H. Kim, K. Cho, S. Y. Park, Adv. Funct. Mater. 2016, 26, 2966-2973.
C. Zheng, S.-L. You, Acc. Chem. Res. 2020, 53, 974-987;
X. M. Xu, J. Z. Li, Z. L. Wang, Chin. J. Org. Chem. 2020, 40, 886-898;
J. Qin, H. Zuo, Y. Ni, Q. Yu, F. Zhong, ACS Sustainable Chem. Eng. 2020, 8, 12342-12347;
M.-S. Tu, K.-W. Chen, P. Wu, Y.-C. Zhang, X.-Q. Liu, F. Shi, Org. Chem. Front. 2021, 8, 2643-2672.
R. Dalpozzo, Chem. Soc. Rev. 2015, 44, 742-778;
J.-B. Chen, Y.-X. Jia, Org. Biomol. Chem. 2017, 15, 3550-3567;
Y.-C. Zhang, F. Jiang, F. Shi, Acc. Chem. Res. 2020, 53, 425-446.
For recent reviewers on catalytic atroposelective synthesis, see:
Y.-B. Wang, B. Tan, Acc. Chem. Res. 2018, 51, 534-547;
J. K. Cheng, S.-H. Xiang, S. Li, L. Ye, B. Tan, Chem. Rev. 2021, 121, 4805-4902;
J. A. Carmona, C. Rodríguez-Franco, R. Fernández, V. Hornillos, J. M. Lassaletta, Chem. Soc. Rev. 2021, 50, 2968-2983.
For recent studies on catalytic synthesis of indole-based atropisomers, see:
H.-H. Zhang, C.-S. Wang, C. Li, G.-J. Mei, Y. Li, F. Shi, Angew. Chem. Int. Ed. 2017, 56, 116-121;
Angew. Chem. 2017, 129, 122-127;
L.-W. Qi, J.-H. Mao, J. Zhang, B. Tan, Nat. Chem. 2018, 10, 58-64;
M. Tian, D. Bai, G. Zheng, J. Chang, X. Li, J. Am. Chem. Soc. 2019, 141, 9527-9532;
F. Jiang, K.-W. Chen, P. Wu, Y.-C. Zhang, Y. Jiao, F. Shi, Angew. Chem. Int. Ed. 2019, 58, 15104-15110;
Angew. Chem. 2019, 131, 15248-15254;
C. Ma, F. Jiang, F.-T. Sheng, Y. Jiao, G.-J. Mei, F. Shi, Angew. Chem. Int. Ed. 2019, 58, 3014-3020;
Angew. Chem. 2019, 131, 3046-3052;
S. Zhu, Y.-H. Chen, Y.-B. Wang, P. Yu, S.-Y. Li, S.-H. Xiang, J.-Q. Wang, J. Xiao, B. Tan, Nat. Commun. 2019, 10, 4268;
L. Peng, K. Li, C. Xie, S. Li, D. Xu, W. Qin, H. Yan, Angew. Chem. Int. Ed. 2019, 58, 17199-17204;
Angew. Chem. 2019, 131, 17359-17364;
X.-L. He, H.-R. Zhao, X. Song, B. Jiang, W. Du, Y.-C. Chen, ACS Catal. 2019, 9, 4374-4381;
W.-Y. Ding, P. Yu, Q.-J. An, K. L. Bay, S.-H. Xiang, S. Li, Y. Chen, K. N. Houk, B. Tan, Chem 2020, 6, 2046-2059;
Y.-H. Chen, H.-H. Li, X. Zhang, S.-H. Xiang, S. Li, B. Tan, Angew. Chem. Int. Ed. 2020, 59, 11374-11378;
Angew. Chem. 2020, 132, 11470-11474;
Y.-P. He, H. Wu, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2020, 59, 2105-2109;
Angew. Chem. 2020, 132, 2121-2125;
A. Kim, A. Kim, S. Park, S. Kim, H. Jo, K. M. Ok, S. K. Lee, J. Song, Y. Kwon, Angew. Chem. Int. Ed. 2021, 60, 12279-12283;
Angew. Chem. 2021, 133, 12387-12391;
L. Sun, H. Chen, B. Liu, J. Chang, L. Kong, F. Wang, Y. Lan, X. Li, Angew. Chem. Int. Ed. 2021, 60, 8391-8395;
Angew. Chem. 2021, 133, 8472-8476.
W. Xia, Q.-J. An, S.-H. Xiang, S. Li, Y.-B. Wang, B. Tan, Angew. Chem. Int. Ed. 2020, 59, 6775-6779;
Angew. Chem. 2020, 132, 6841-6845;
J. Frey, A. Malekafzali, I. Delso, S. Choppin, F. Colobert, J. Wencel-Delord, Angew. Chem. Int. Ed. 2020, 59, 8844-8848;
Angew. Chem. 2020, 132, 8929-8933;
Q. Ren, T. Cao, C. He, M. Yang, H. Liu, L. Wang, ACS Catal. 2021, 11, 6135-6140.
I. Takahashi, Y. Suzuki, O. Kitagawa, Org. Prep. Proced. Int. 2014, 46, 1-23;
Z. Li, S. Yu, Sci. Sin. Chim. 2020, 50, 509-525;
O. Kitagawa, Acc. Chem. Res. 2021, 54, 719-730;
P. Rodríguez-Salamanca, R. Fernández, V. Hornillos, J. M. Lassaletta, Chem. Eur. J. 2022, 28, e202104.
S. Brandes, M. Bella, A. Kjaersgaard, K. A. Jørgensen, Angew. Chem. Int. Ed. 2006, 45, 1147-1151;
Angew. Chem. 2006, 118, 1165-1169;
H.-Y. Bai, F.-X. Tan, T.-Q. Liu, G.-D. Zhu, J.-M. Tian, T.-M. Ding, Z.-M. Chen, S.-Y. Zhang, Nat. Commun. 2019, 10, 3063;
D. Wang, Q. Jiang, X. Yang, Chem. Commun. 2020, 56, 6201-6204.
G. X. Ortiz, Jr., B. N. Hemric, Q. Wang, Org. Lett. 2017, 19, 1314-1317.
M. M. Heravi, Z. Kheilkordi, V. Zadsirjan, M. Heydari, M. Malmir, J. Organomet. Chem. 2018, 861, 17-104;
R. Dorel, C. P. Grugel, A. M. Haydl, Angew. Chem. Int. Ed. 2019, 58, 17118-17129;
Angew. Chem. 2019, 131, 17276-17287.
N. A. Romero, K. A. Margrey, N. E. Tay, D. A. Nicewicz, Science 2015, 349, 1326-1330;
K. A. Margrey, J. B. McManus, S. Bonazzi, F. Zecri, D. A. Nicewicz, J. Am. Chem. Soc. 2017, 139, 11288-11299;
N. Sauermann, R. Mei, L. Ackermann, Angew. Chem. Int. Ed. 2018, 57, 5090-5094;
Angew. Chem. 2018, 130, 5184-5188;
Q.-L. Yang, X.-Y. Wang, J.-Y. Lu, L.-P. Zhang, P. Fang, T.-S. Mei, J. Am. Chem. Soc. 2018, 140, 11487-11494;
P. Feng, G. Ma, X. Chen, X. Wu, L. Lin, P. Liu, T. Chen, Angew. Chem. Int. Ed. 2019, 58, 8400-8404;
Angew. Chem. 2019, 131, 8488-8492;
L. Zhang, L. Liardet, J. Luo, D. Ren, M. Gratzel, X. Hu, Nat. Catal. 2019, 2, 366-373;
A. Ruffoni, F. Julia, T. D. Svejstrup, A. J. McMillan, J. J. Douglas, D. Leonori, Nat. Chem. 2019, 11, 426-433.
S.-L. Li, C. Yang, Q. Wu, H.-L. Zheng, X. Li, J.-P. Cheng, J. Am. Chem. Soc. 2018, 140, 12836-12843;
H. Li, X. Yan, J. Zhang, W. Guo, J. Jiang, J. Wang, Angew. Chem. Int. Ed. 2019, 58, 6732-6736;
Angew. Chem. 2019, 131, 6804-6808;
L. Wang, J. Zhong, X. Lin, Angew. Chem. Int. Ed. 2019, 58, 15824-15828;
Angew. Chem. 2019, 131, 15971-15975;
S. D. Vaidya, S. T. Toenjes, N. Yamamoto, S. M. Maddox, J. L. Gustafson, J. Am. Chem. Soc. 2020, 142, 2198-2203;
T. Li, C. Mou, P. Qi, X. Peng, S. Jiang, G. Hao, W. Xue, S. Yang, L. Hao, Y. R. Chi, Angew. Chem. Int. Ed. 2021, 60, 9362-9367;
Angew. Chem. 2021, 133, 9448-9453;
Z.-S. Liu, P.-P. Xie, Y. Hua, C. Wu, Y. Ma, J. Chen, H.-G. Cheng, X. Hong, Q. Zhou, Chem 2021, 7, 1917-1932;
R. Mi, H. Chen, X. Zhou, N. Li, D. Ji, F. Wang, Y. Lan, X. Li, Angew. Chem. Int. Ed. 2022, 61, e202111860;
Angew. Chem. 2022, 134, e202111860.
V. Nair, R. S. Menon, A. T. Bijub, K. G. Abhilashc, Chem. Soc. Rev. 2012, 41, 1050-1059;
X. Zhang, Y.-H. Chen, B. Tan, Tetrahedron Lett. 2018, 59, 473-486.
L. Liao, C. Shu, M. Zhang, Y. Liao, X. Hu, Y. Zhang, Z. Wu, W. Yuan, X. Zhang, Angew. Chem. Int. Ed. 2014, 53, 10471-10475;
Angew. Chem. 2014, 126, 10639-10643;
Y.-H. Chen, D.-J. Cheng, J. Zhang, Y. Wang, X.-Y. Liu, B. Tan, J. Am. Chem. Soc. 2015, 137, 15062-15065;
J.-Z. Wang, J. Zhou, C. Xu, H. Sun, L. Kürti, Q.-L. Xu, J. Am. Chem. Soc. 2016, 138, 5202-5205;
M. Moliterno, R. Cari, A. Puglisi, A. Antenucci, C. Sperio, E. Moretti, A. Di Sabato, R. Salvio, M. Bella, Angew. Chem. Int. Ed. 2016, 55, 6525-6529;
Angew. Chem. 2016, 128, 6635-6639;
Y.-H. Chen, L.-W. Qi, F. Fang, B. Tan, Angew. Chem. Int. Ed. 2017, 56, 16308-16312;
Angew. Chem. 2017, 129, 16526-16530;
C. Xu, H. Zheng, B. Hu, X. Liu, L. Lin, X. Feng, Chem. Commun. 2017, 53, 9741-9744;
Q.-J. Liu, J. Zhu, X.-Y. Song, L. Wang, S. R. Wang, Y. Tang, Angew. Chem. Int. Ed. 2018, 57, 3810-3814;
Angew. Chem. 2018, 130, 3872-3876;
S. N. Reddy, V. R. Reddy, S. Dinda, J. B. Nanubolu, R. Chra, Org. Lett. 2018, 20, 2572-2575;
W. Luo, Z. Sun, E. H. N. Ferno, V. N. Nesterov, T. R. Cundari, H. Wang, Chem. Sci. 2020, 11, 9386-9394;
G. Coombs, M. H. Sak, S. J. Miller, Angew. Chem. Int. Ed. 2020, 59, 2875-2880;
Angew. Chem. 2020, 132, 2897-2902;
W.-Y. Ma, C. Gelis, D. Bouchet, P. Retailleau, X. Moreau, L. Neuville, G. Masson, Org. Lett. 2021, 23, 442-448.
E. Kumli, F. Montermini, P. Renaud, Org. Lett. 2006, 8, 5861-5864;
B. Xiong, R. Shen, M. Goto, S.-F. Yin, L.-B. Han, Chem. Eur. J. 2012, 18, 16902-16910;
X. Guo, H. Mayr, J. Am. Chem. Soc. 2014, 136, 11499-11512;
S. A. Konovalova, A. P. Avdeenko, A. A. Santalova, G. V. Palamarchuk, V. V. D'yakonenko, O. V. Shishkin, Russ. J. Org. Chem. 2015, 51, 42-50;
G. Song, Z. Zheng, Y. Wang, X. Yu, Org. Lett. 2016, 18, 6002-6005.
Y. Huang, Y. Li, P.-H. Leung, T. Hayashi, J. Am. Chem. Soc. 2014, 136, 4865-4868;
G. A. Shevchenko, B. Oppelaar, B. List, Angew. Chem. Int. Ed. 2018, 57, 10756-10759;
Angew. Chem. 2018, 130, 10916-10919.
During the peer-review process of our manuscript, Liao and co-workers disclosed copper-catalyzed 1,6-addition of indoles and other heteroarenes to QDI in a racemate fashion, see: We. Lan, F. Liu, J. Hu, J. Zhu, S. Hu, J.-P. Wan, L. Liao, J. Org. Chem. 2022, 87, 5592-5602.
Deposition Number 1974887 (for 3af) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
R. Adams, A. S. Nagarkatti, J. Am. Chem. Soc. 1950, 72, 4601-4606.
Q. Yu, Y. Fu, J. Huang, J. Qin, H. Zuo, Y. Wu, F. Zhong, ACS Catal. 2019, 9, 7285-7291;
H. Zuo, J. Qin, W. Zhang, M. A. Bashir, Q. Yu, W. Zhao, G. Wu, F. Zhong, Org. Lett. 2020, 22, 6911-6916.
J.-X. Zhang, F. K. Sheong, Z. Lin, Chem. Eur. J. 2018, 24, 9639-9650;
J.-X. Zhang, F. K. Sheong, Z. Lin, WIREs Comput. Mol. Sci. 2020, 10, e1469.
W.-J. van Zeist, F. M. Bickelhaupt, Org. Biomol. Chem. 2010, 8, 3118-3127;
I. Fernández, F. M. Bickelhaupt, Chem. Soc. Rev. 2014, 43, 4953-4967.
K. D. Mane, A. Mukherjee, G. K. Das, G. Suryavanshi, J. Org. Chem. 2022, 87, 5097-5112.
M. Giambiagi, M. S. Giambiagi, K. C. Mundim, Struct. Chem. 1990, 1, 423;
M. Giambiagi, M. S. Giambiagi, C. D. S. Silva, A. P. Figueiredo, Phys. Chem. Chem. Phys. 2000, 2, 3381-3392.
J. Klein, P. Fleurat-Lessard, J. Pilme, J. Comput. Chem. 2021, 42, 840-854;
H. Huang, L. Liu, J. Wang, Y. Zhou, H. Hu, X. Ye, G. Liu, Z. Xu, H. Xu, W. Yang, Y. Wang, Y. Peng, P. Yang, J. Sun, P. Yan, X. Cao, B. Tang, Chem. Sci. 2022, 13, 3129-3139.